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Abstract

Most digital color cameras sample only one color at each spatial location, using a sin-
gle sensor coupled with a color filter array (CFA). An interpolation step called demo-
saicing (or demosaicking) is required for rendering a color image from the acquired
CFA image. Already proposed Linear Minimum Mean Square Error (LMMSE) de-
mosaicing provides a good tradeoff between quality and computational cost for
embedded systems. In this paper we propose a modification of the stacked notation
of superpixels, which allows an effective computing of the LMMSE solution from an
image database. Moreover, this formalism is used to decompose the CFA sampling
into a sum of a luminance estimator and a chrominance projector. This decom-
position allows interpreting estimated filters in term of their spatial and chromatic
properties and results in a solution with lower computational complexity than other
LMMSE approaches for the same quality.

Key words: demosaicing, demosaicking, interpolation, color, luminance,
chrominance, Wiener filtering

1 Introduction

A color image can be represented as a vector of three components per pixel,
measuring the light intensity in three wavelength bands of the visible spectrum
(Red, Green and Blue), recalling the trichromacy of human color vision (see [1]
for a review on vector image processing). In order to reduce cost and size, most
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(a) (b) (c)

Fig. 1. (a) a color image with R, G and B values at each pixel, (b) a color CFA
image with a single chromatic value per pixel according to the Bayer CFA pattern
[6], (c) the corresponding grayscale CFA image as captured by the device.

digital cameras use a single sensor. The sensor is then coupled to a color filter
array (CFA) and samples only one chromatic value at each spatial location
as shown in Figure 1. The digital values captured by the sensor are shown
in Figure 1(c). These digital values correspond to intensity levels of different
colors as shown in Figure 1(b), which are the subsampled RGB values of the
color image in Figure 1(a). The captured image - called a CFA image - needs
to be interpolated in order to retrieve a color image with three components
per pixel [2]. This operation is called demosaicing (or demosaicking [3]) and
has monopolized many researchers in the field of image and signal processing
from the early 80’s.

Demosaicing can be seen as an inverse problem. However, considering a CFA
image as a spatial multiplexing of subsampled color planes theoretically pre-
vents of finding a solution as the inverse of the acquisition process. The sub-
sampling operation is equivalent to a projection of the color image into a set
of images having zeros according to the subsampling pattern (Figure 1(b) is
actually an RGB image where the missing chromatic values are filled with
zeros). In a general case, a projection is not reversible, due to the infinity of
solutions for a given projected image. The recovery of the original image is
only possible if we constrain the set of solutions. As an example, the bilinear
interpolation [4,5] of each R, G and B channel isolated from the mosaic can
be seen as inverting the projection onto a constrained set, where the Fourier
spectrum of the elements has a shape in (1 + cos(2πf))/2 function. This cost
effective solution generally generates demosaicing artifacts (blurring, false col-
ors) because the image model is too restrictive. All demosaicing algorithms
can be seen as trying to find the optimal constrained set (see Section 4.1).

In the present paper, the constraint is given through Wiener filters, which are
optimal in Linear Minimum Mean Square Error (LMMSE) reconstruction. In
the pioneer work of Taubman [7] and Trussell [3], the bases and theoritical
framework of Wiener demosaicing is given from an image model. We propose
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a simplified formulation of the Wiener demosaicing without considering all the
optical parameters given in the original papers [3,7] (Section 2). This allows
to design a luminance/chrominance decomposition through the demosaicing
process, which results in a less complex method (Section 3). To illustrate
the method, we use an image database on which we perform the LMMSE
estimate and measure the performance (Section 4). The presented method is
competitive among others in term of quality of reconstruction and speed. It
is not the best one, nevertheless it is efficient and it helps understanding the
estimated filters in term of their spatial and chromatic properties.

2 Linear Wiener demosaicing

In [3,7], the use of stacked notation unfolds the hyperstectral image of size
H × W × P into a column vector of size HWP × 1, where H ,W and P
are respectively the height, the width and the number of spectral bands of
the image. This allows expressing the model of image formation as a matrix
multiplication between the hyperspectral original image, a blurring matrix
(optical behavior), a spectral sensitivities matrix and the sampling matrix. In
the present article we will only consider the process where Y is a color image
with three components per pixel (P = 3) and X is a CFA image:

X = PrY (1)

with Pr being a projection operator that represents the sampling process
converting the image with three colors per pixels to a CFA image. Both X and
Y are random variables. Taubman [7] introduced in his paper the concept of
“superpixel.” A superpixel is a group of pixels that matches the basic pattern
of the CFA. In the Bayer CFA the basic pattern is composed of four pixels
arranged on a 2×2 square: one red, two green and one blue (Figure 2). At the
scale of the superpixel, the mosaic is regular, a tiling of superpixels. With the
assumption that the acquisition process is invariant over the image, which is
widely used, it allows the design of space-invariant filters at this scale, or in
other words of block shift-invariant filters [8]. In Portilla et al. [9], the change
over the basic pattern of the CFA is done by estimating four filters.

But while Taubman and Trussell stacked the color image Y into a 12HW × 1
column vector that imposed a large 3HW × 12HW sampling matrix, we have
chosen to stack the superpixels row-wise into a 12 × HW

4
matrix, as shown in

Figure 2. This allows the use of a 4 × 12 sampling matrix Pr, which is much
more convenient to handle.

The goal of linear demosaicing is to find a matrix D that will recover the color
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Fig. 2. Illustration that a CFA image X is constructed from a matrix multiplica-
tion between Pr and the color image Y if they are represented as column-stacked
superpixels.

image Ỹ from the CFA image X:

Ỹ = DX (2)

minimizing the mean square error e with the original color image Y:

e = E[‖Y − Ỹ‖2] (3)

Note that D, in Equation (2), cannot be defined as the inverse of Pr be-
cause PrTPr is singular. The classical solution to this equation is the Wiener
solution given by:

D = (E[YXT ])(E[(XXT )])−1 (4)

In order to facilitate the comprehension of the reconstruction, let us consider
in a first step the reconstruction of a given superpixel in the color image,
considering only the corresponding superpixel in the CFA image. Y is then
a superpixel, a 2 × 2 × 3 matrix, stacked into a 12 × 1 column vector. The
CFA image X is also a stacked superpixel, but contains only four values, it
is a 4 × 1 column vector. Therefore, the demosaicing matrix D has to be
12 × 4, containing the coefficients for reconstructing four pixels with three
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color components from four pixels with a single color component:

Ỹ = D X
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(5)

The extension for all the pixels in the image is straightforward, considering
the image stacked into a row vector. There are H

2
W
2

superpixels in the image,
assuming that H and W are even. Thus, the vector X will be of size 4× HW

4
,

and the corresponding vector Y will be of size 12× HW
4

, as shown in Figure 2.
The size of D remains unchanged. Note that this point differs from [7] and [3]
since the images were stacked vertically.

The consideration of a larger kernel for the reconstruction, a neighborhood of
superpixels, is obtained by copying the local neighborhoods in vertical direc-
tion for matrix X and by extending D in horizontal direction. For example for
an n × n neighborhood of superpixels, Y is still of size 12 × HW

4
but X will

be of size 4n2 × HW
4

and D of size 12 × 4n2. For the remainder of the paper
and for ease of notations, stacked images will be implicitly extended vertically
with their local neighborhoods.

The matrix product of Equation (2) performs a linear combination of the
values of the superpixels neighborhoods weighted by the coefficients of the
filter D. In other words, it performs a block shift-invariant convolution between
D and X. The demosaicing matrix D can be seen as a set of three 4 × 4n2

submatrices Di, i ∈ {R, G, B} denoting a color plane, which corresponds to
the three reconstructing filters of each color plane:
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(a) Position 1: G1 and B1

filters
(b) Position 2: R2 and B2

filters

(c) Position 3: R3 and B3

filters
(d) Position 4: R4 and G4

filters

Fig. 3. Amplitude spectra of the filters estimated for direct reconstruction at each
of the four positions in the Bayer superpixel (filters are normalized for display).
The filters differ from one to another in their cutoff frequencies. Their functions are
explained by the luminance-chrominance decomposition (section 3).

Each row of the submatrix Di corresponds to the reconstructing filter of the
component i at one position in the superpixel in Y from the 4n2 elements of
the corresponding neighborhood of the superpixel in X.

We can compute matrix D following Equation (3) over a database of full
resolution color images. The use of a database means that we explicitly know
Y and that we simulate the CFA image X with Equation (1). The computation
requires solely the inversion of a matrix of size 4n2 × 4n2 (n being the size of
the neighborhood in superpixels). This result is similar to the one obtained
by [3] but computed more directly with our stacked notation. Moreover the
fact that the computation is done in the spatial domain rather than in the
frequency domain, allows us to control the size of the impulse response (i.e.
the size of matrix Di) and to avoid any arbitrary truncation of the impulse
response. A similar approach was recently used in [9] through the definition
of a spatio-chromatic covariance matrices defined for the four elements of the
superpixel.

3 Wiener demosaicing through luminance and chrominance spaces

3.1 Sampling model

Luminance and chrominance coding is a different representation of a color
image. Y can be equally rewritten as the sum of its luminance Φc and its
chrominance Ψc representations: Y = Φc + Ψc. If we call respectively Pc and
Mc the luminance and chrominance linear estimators, using the notation of
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Figure 2 we can write:

Y = PcY + McY (6)

with Pc + Mc = I12 to have the decomposition conservative (I12 the identity
matrix of size 12 × 12). Defining a luminance-chrominance decomposition is
equivalent to defining matrices Pc and Mc. Luminance Φc is usually defined as
a positive weighting of R, G and B values, with weights pi with i ∈ {R, G, B}.
We suppose that

∑

i pi = 1, with pi ≥ 0, or that luminance is a barycenter
of R, G and B values. Moreover, luminance is achromatic, having no chro-
matic difference information. It thus has a single value per spatial position. It
can equivalently be represented as a color vector with three identical inten-
sity values. The chromatic part Ψc of the image called chrominance is then
composed by a vector of three components, giving the differences from R, G
and B to the luminance image. Since the sum of the pi equals one, the sum
of the chromatic components vanishes at each pixel. Thus, the luminance and
chrominance definitions sum up to:

Pc = [ 1 1 1 ]T ⊗ [ pR pG pB ] ⊗ I4

︸ ︷︷ ︸

P

Mc = I12 −Pc = (I3 − [ 1 1 1 ]T ⊗ [ pR pG pB ]) ⊗ I4

(7)

where ⊗ is the Kronecker (outer) product. With this notation Pc is a 12× 12
matrix having three times the same submatrix P in vertical direction (the one
detailed on the right-hand side of the equation). The chrominance estimator
is a 12 × 12 matrix. Since the sum of the three coordinates at each spatial
position vanishes (linear dependence), the chrominance is intrinsically a two-
dimensional signal as usually defined in other luminance and chrominance
standards.

Now that we have defined the luminance and chrominance decompostion of
a color image, let us see what connection exists with a CFA image. A CFA
image can be seen as a grayscale image, meaning a single component per spa-
tial position, like matrix X in Equation 1, even if this component corresponds
alternatively to a spatial multiplexing of different color components. This is
illustrated by the fact that Pr can be decomposed into a sum of three sub-
sampling operators mi operating on the superpixels of each color plane i as
follows:

Pr = [ 1 0 0 ] ⊗ mR + [ 0 1 0 ] ⊗ mG + [ 0 0 1 ] ⊗mB (8)

with






mR = diag([ 1 0 0 0 ])

mG = diag([ 0 1 1 0 ])

mB = diag([ 0 0 0 1 ])

(9)
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Fig. 4. Average amplitude spectrum of a CFA image computed from all the images
in the database: the luminance information is localized at the center while the
chrominance information is localized on the corners and on the middle of the borders
of the Fourier plane.

where diag defines a diagonal matrix filled by the argument vector. Here the
“sum” operator acts as the multiplexer since color planes are already subsam-
pled by mi functions. A CFA image can equivalently be represented as a color
image Xc in which most of the color values are equal to zero because two third
of the chromatic components are missing:

Xc = PrTPrY = PrTX (10)

The term PrTPr denotes a 12×12 subsampling matrix having only four values
equal to one, which selects in the color image Y the pixels corresponding to
the CFA image X and fills the remainder with zeros. As shown on the right-
hand side of the equation, PrT operates as a demultiplexer since it isolates
each color channel from the mosaic.

We can now rewrite Pr in terms of luminance and chrominance estimators.
Each sampling matrix mi can be decomposed as follows: mi = piI4+mi−piI4.
Hence, from Equation 8, Pr can be rewritten:

Pr = [ pR pG pB ] ⊗ I4 + Pr− [ pR pG pB ] ⊗ I4 (11)

By identification between Equation 7 and Equation 11 we have:

Pr = P + M

= P + Pr(I3 ⊗ I4) − Pr([ 1 1 1 ]T ⊗ [ pR pG pB ] ⊗ I4)

= P + PrMc

(12)

which clearly states that the subsampling and projection due to the color filter
array does not affect the luminance part of the color image, but is reported
on the chrominance part. The projector Pr is a sum of the luminance estima-
tor P defined identically as in color images (Equation 7) and a chrominance
projector M, which is the projection of the chrominance estimator Mc de-
fined for color images (Equation 7). It follows that the demultiplexed chromi-
nance in the CFA equals the subsampled chrominance of a color image (i.e.
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PrTM = PrTPrMc). A way to recover the chrominance of a color image
from a CFA image is to demultiplex the chrominance part of the CFA (i.e.
transforming it into a color image with PrT ) and to interpolate it.

Moreover, we can constrain parameters pi to ensure that the modulated chromi-
nance estimator in a CFA image vanishes over a superpixel, and consequently
over the whole image. This leads to vanishing the sums of the three diagonals
of the matrix M or in the Bayer CFA:







1 − 4pR = 0

2 − 4pG = 0

1 − 4pB = 0

which gives
{

pR =
1

4
, pG =

1

2
, pB =

1

4

}

The density spectra of the functions mi can be explicitly calculated, as was
done in [10]. It appears in the Bayer arrangement that the periodicity of these
functions modulates the chrominance to high frequencies on the borders of the
spectrum, as shown in Figure 4. The average of the Fourier spectrum of CFA
images constructed from the database shows indeed nine regions where the
energy is concentrated. The one centered in low frequency corresponds to the
non modulated part of the color image in the CFA, the luminance, and the
others centered on the corners and on the middle of the sides of the Fourier
spectrum correspond to the modulated parts of the color image in the CFA,
the chrominance signals.

3.2 Solution derived from the sampling model

Instead of estimating directly the color image from the CFA, as described in
the previous section, we can in a first step estimate the luminance Φ̃ from the
CFA:

Φ̃ = HΦX (13)

with HΦ being the luminance filter. Once the luminance is estimated, we re-
cover the modulated chrominance as the difference between the CFA image
and the luminance Ψ̃ = (X − Φ̃). As suggested, we demultiplex the chromi-
nance by multiplying it with PrT before interpolating it to obtain the full
chrominance Ψ̃c:

Ψ̃c = HΨPrT Ψ̃ (14)

where HΨ is the matrix containing the three chrominance interpolating filters.
Finally, the reconstructed color image Ỹ is the sum of both parts:

Ỹ = Φ̃c + Ψ̃c (15)
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Fig. 5. Amplitude spectra of the luminance filter for each position (1, 2, 3 and 4)
in the superpixel. At position 2 and 3 (G pixels), luminance can be retrieved with
a maximal horizontal and vertical acuity.

where Φ̃c =
[

1 1 1

]T

⊗ Φ̃.

We thus have to train two filters over the database:

• the luminance estimator, calculated from the CFA image X (which is sim-
ulated from the database by setting the appropriate chromatic values to
zero) and the luminance Φ (which is also computed from the database):

HΦ = (E[ΦXT ])(E[(XXT )])−1 (16)

• and the chrominance interpolator, calculated from the chrominance Ψc and
the subsampled chrominance Ψ (both computed from the database):

HΨ = (E[Ψc(PrTΨ)T ])(E[(PrTΨ)(PrTΨ)T )])−1 (17)

with Φ = PY, Ψc = McY and Ψ = X − Φ. The great advantage of this
decomposition is that the chrominance has a narrow bandwidth with respect
to the Nyquist frequency of each demultiplexed plane. It requires thus only
small order filters for interpolation. At the opposite, the luminance estimator
needs to have high gradients at the frequencies located on the border between
luminance and modulated chrominance. It requires thus a high order filter for
estimation (typically 7× 7 or 9× 9), but at least this estimation is performed
only once. This property makes the algorithm computationally much more
efficient than the RGB algorithm presented in the previous section.

4 Results and discussion

In this section, after a quick state of the art in demosaicing, we describe the
results of an implementation of the proposed method using an image database
and compare it to existing algorithms in term of quality and performance.
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(a) Position 1: G1 and B1

filters
(b) Position 2: R2 and B2

filters

(c) Position 3: R3 and B3

filters
(d) Position 4: R4 and G4

filters

Fig. 6. Amplitude spectra of the chrominance filters at each position in the super-
pixel. Since chrominance is a low-pass signal, low-order filters (3 × 3) can be used.

4.1 State of the art

There are many ways to define a useful constraint set for improving the recon-
struction of the image. Cok [11] proposed the use of constant hue hypothesis,
interpolating hue (ratio of two colors) instead of the color channel because
hue is rather constant on object surface. The constant hue hypothesis was
also used by Adams [4] to design convolution filters. More recently, Lukac [12]
proposed a normalized (scaled and shifted) color ratio that improved color
ratios interpolation. Many authors (see [13] for a review) have proposed di-
rectional interpolation to account edges where most visible artifacts appear in
the reconstructed image [14–18]. These methods result in a weighted bilinear
interpolation where the weights depend on the local content of the image.
A variant edge-sensing method consists in interpolating separately in hori-
zontal and vertical directions and chosing the prefered directions according
a criteria based on gradients [14,19,20]. Other authors proposed an iterative
process or post-processing process regularizing the reconstructed image, pos-
sibly combined to an edge-sensitive interpolation [13,21,22,18,23–26]. In [27]
the authors used the high frequency pattern of the green channel, which has
a better resolution in the Bayer CFA, to restrict the set of solutions by ar-
tificially copying this high frequency pattern onto the red and blue planes.
In an extended version [28], two constrained sets were defined, one garanteed
that the high frequency components were those corresponding to the green
channel, and the second one ensured that existing pixels in the CFA kept the
same values in the reconstructed image.

Turning to linear methods, which recently become attractive due to their sim-
plicity, effectiveness and quality, Crane et al. [29] proposed to use the constant
hue hypothesis [11] to design convolution filters for the interpolation. Pei et

al [30] interpolated bilinearly the color difference R minus G and B minus G.
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Malvar et al. [31] proposed a linear method based on the assumption that edges
would have much stronger ”luminance” than ”chrominance” components. This
assumption was used by correcting the result of a bilinear interpolation with
a coefficient expressing the local ”luminance” variations. In Alleysson et al.

[10], it was shown that CFA sampling modulates luminance and chrominance
in the Fourier domain. This allows estimating luminance and chrominance by
frequency selection and results in cost effective, linear, space-invariant convo-
lution filters for demosaicing. Based on this model, Lian et al. [26] proposed
using a space-variant filter to improve luminance estimation according to the
structure of Bayer CFA. Both [26,32] include an adaptive process in the lumi-
nance estimation, resulting in a high quality reconstruction.

There is a more explicit way to construct the constrained set using the esti-
mated statistics of color images. Muresan et al. [33] built a metric based on
exemplars, which defined a restricted set of solutions for the interpolation.
In [34], the authors proposed to estimate the statistics of the image with the
existing pixels and to design image-specific Wiener filters. In their papers,
Taubman [7] and Trussell et al. [3] used an image formation model, where the
source was a hyperspectral image. They used a minimum mean square error
approach with prior probability distributions on the image formation to de-
sign filters for demosaicing and deblurring the hyperspectral image acquired
through a CFA-based camera. In Portilla et al. [9] the filters were estimated
from an image database and it is shown that LLMSE demosaicing can operate
denoising and deblurring. In Hirakawa et al. [35], a TLS denoising is designed
conjointly with demosaicing and operated well on real noisy CMOS images.

4.2 Implementation and performance analysis

We chose to implement the Wiener methods of sections 2 and 3 by training
the filters on an image database. The main assumption is that all the images
of the database have been acquired through the same device, so that they
share common statistics. This assumption allows us defining a unique optimal
linear demosaicing filter for the image database. However it limits its applica-
tion to a specific camera because the spectral and the optical characteristics
of the camera influence the designed filters. One solution for designing the
filters consists, as Taubman proposed [7], in estimating the spectral and opti-
cal behaviors of the camera and including it in the filter. The use of a color
image database having the spectral and optical behaviour as the designed
camera is an alternative solution. Moreover, the use of a database allows to
combine in a single operation different color processing steps employed in the
image pipeline, because the filter will follow the behavior of the database. An
example of sharpening joint to demosaicing was given by Portilla et al. [9].
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Twenty-four color images from the Kodak database 3 (768× 512 pixels) were
used for the simulation. We computed the mean Peak Signal-to-Noise Ratio
and the S-CIELAB metric ∆E (assuming a 72 dpi monitor, 18 in. of distance)
between the original color images and the reconstructed images using the
“leave-one-out” method [36]. This method is widely used in the field of data
analysis when the number of available elements for training and testing is
restricted. If the database contains N elements, the “leave-one-out” method
consists in training the algorithm (computing D) over (N -1) elements and
testing it (computing Ỹ) only over the left out element. This operation is
repeated for each element of the database, and the results are averaged over
the whole database. It permits avoiding the obvious bias when a tested image
was used in the training set, while maximising the number of elements in the
training set.

The simulation over the image database gave an average PSNR of 39.20dB
for the Wiener demosaicing algorithm (Table 1, row labeled [9]) for kernels
of size 9 × 9 pixels, and 38.63dB for kernels of size 7 × 7. The resulting two-
dimensional filters reconstructed from the stacked filters (the rows of D) for
each of the four positions in the superpixel are shown in Figure 3. Obviously,
only two filters are represented at each position of the superpixel instead
of three; the third one estimating a color value from an existing one, being
the identity. We see that the filters differ from one to another in their high
frequency characteristics.

Concerning the luminance/chrominance algorithm, we estimated one lumi-
nance filter of size 9 × 9 pixels (Figure 5) and one of size 7 × 7, and chromi-
nance filters of size 3 × 3 pixels (Figure 6). We obtained average PSNR’s of
respectively 39.16dB and 38.67dB with the 9 × 9 filter and with the 7 × 7
filter. As expected by the model, the luminance filters are large low-pass fil-
ters cutting the areas where the chrominance is modulated. Interestingly the
luminance has a full vertical and horizontal resolution at positions 2 and 3
in the superpixel. This property was demonstrated and exploited in [26] by
considering the fact that the sum of the two high vertical frequency and high
horizontal frequency carriers vanishes on G pixels. Moreover, as [26] remarked
in his paper, there is less aliasing with modulated chrominance at vertical and
horizontal frequencies than with chrominance modulated at diagonal frequen-
cies. This allows using a smaller order filter on G pixels. By consequence a
5 × 5 kernel was designed for usage on the G pixels, without any significative
loss of quality (0.05 dB). The results for the image database appear in Table 1,
row called Proposed. They are very close to those found with the algorithm
described in previous section and visual artefacts are the same in both cases
(Figures 7 and 8).

3 http://www.cipr.rpi.edu
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Example illustrating the zipper effect: (a) original image, and reconstruction
using (b) bilinear method, (c) [30], (d) [9], (e) proposed method, (f) [32], (g) [26],
(h) [25] and (i) [19].

Visually, both algorithms may suffer from zipper noise near edges (Figure 7)
and false colors in high frequency areas (Figure 8). Zipper noise appear when
chrominance has strong variations. The modulated chrominance overflows then
on luminance and is actually interpreted as high frequency pattern of lumi-
nance. On the oppposite, false colors appear when luminance is of too high
frequency. Luminance then overflows on the modulated chrominance and is
demodulated into low frequency as a chrominance signal.

In Table 1 are also represented the results for the bilinear method and for
methods of [30,31,10,28,26,32,25,19]. The results of some of these algorithms
are also represented in Figures 7 and 8. [28] was tested with 3 and 8 itera-
tions, [25] with one and two thresholds. Among the tested algorithms, the one
reducing both zipper noise and false colors most is [19].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Example illustrating the false color artefact, in the same order as in Figure 7.

4.3 Link between RGB algorithm and luminance-chrominance algorithm

In the RGB algorithm, each color plane is retrieved by picking up the optimal
combination of pixels in the CFA image using the filter D, while in the lu-
minance/chrominance algorithm the image is reconstructed from the sum of
luminance and chrominance. It can be easily shown that these two methods
are formally equivalent. Combining Equations (3) and (15) gives:

D =
[

1 1 1

]T

⊗ Hφ + HψPr
T (I4 − Hφ) (18)
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method R G B ∆ES−CIELAB Efficiency

bilinear 29.22 (±3.32) 33,04 (±3.25) 29.27 (±3.33) 1.79 (±0.81) 6HW

[30] 37.21 (±3.12 ) 38.87 (±2.99 ) 36.06 (±2.99) 1.12 (±0.44) 12HW

[31] 35.36 (±3.34 ) 38.87 (±2.99 ) 34.15 (±3.12) 1.25 (±0.53) 21HW

[10] 37.83 (±2.44) 40.74 (±2.26) 36.48 (±2.38) 1.10 (±0.34) 77HW

[28] 3 iter. 38.40 (±2.73) 41.37 (±2.40) 37.46 (±2.59) 0.99 (±0.35) 405HW

[28] 8 iter. 39.29 (±2.54) 41.37 (±2.40) 37.81 (±2.47) 0.96 (±0.33) 885HW

[26] 38.77 (±2.59) 42.12 (±2.79) 38.62 (±2.88) 0.82 (±0.31) 63HW

[32] 38.81 (±2.50) 42.82 (±2.50) 38.62 (±2.69) 0.83 (±0.30) 2274HW a

[25] 1 thr. 38.37 (±2.45) 41.77 (±2.40) 38.44 (±2.67) 0.93 (±0.33) 77HW

[25] 2 thr. 38.07 (±2.45) 41.37 (±2.40) 38.12 (±2.65) 0.96 (±0.35) 117HW

[19] 38.02 (±3.24) 39.59 (±3.21) 36.76 (±3.06) 0.90 (±0.37) 161HW

[9], 7x7 38.15 (±2.55) 40.88 (±2.41) 36.86 (±2.55) 1.15 (±0.34) 98HW

[9] 9x9 38.87 (±2.56) 41.43 (±2.42) 37.29 (±2.58) 1.00 (±0.34) 162HW

Proposed, 7x7 38.40 (±2.49) 40.88 (±2.37) 36.74 (±2.47) 1.18 (±0.34) 47HW

Proposed, 9x9 38.92 (±2.52) 41.34 (±2.36) 37.21 (±2.51) 1.01 (±0.33) 63HW

a this value is not significative since the author of [32] has not optimized his algorithm.
Table 1
Mean PSNR values for R, G and B planes (dB); mean ∆E in the S-CIELAB com-
puted over the database; and efficiency in number of cycles for an image of size
HxW, for several alogrithms.

and the definition of the luminance estimator (Equation (7)) yields to:







Hφ =
∑

i

piDi

Hψi = (Di − Hφ) (I4 − Hφ)
−1

(19)

This explains why the obtained PSNR values for both algorithms (Table 1) are
so close. Moreover we can now interpret the shapes of the filters encountered
in Figure 3. All filters have large low-pass components, which correspond to
the luminance filter, and the corners and the middle of the sides are present
or not, following the position in the superpixel in order to demodulate the
chrominance part.
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4.4 Computational complexity analysis

The performances of the various algorithms are estimated in terms of number
of clock cycles required for processing an image of size HxW. Since a convo-
lution can be efficiently implemented on a Digital Signal Processor with the
MAC instruction (Multiplier-Accumulator), we consider that the multiplica-
tion by one coefficient and the addition of the result is performed in one cycle
(it is true for most DSPs). Other instructions (absolute values, comparisons,
divisions...) are also counted as one cycle, although they may take more cycles
following the DSP model. The instructions of data transfer and data read-
ing/writing are not taken into account. The values are reported in Table 1 at
the Efficiency column. For the Wiener RGB method, we have two convolutions
with 9 × 9 filters, yielding to 162HW cycles. For the luminance-chrominance
method, a 9×9 or 7×7 luminance filter is used for R/B pixels and a 5×5 filter
is used for G pixels (53 or 37 cycles), and then two 3×3 chrominance filters (6
cycles, as bilinear filtering: 4 operations at G pixels and 8 operations at R or
B pixels). Taking account the substraction of the luminance from the mosaic
image (1 cycle) and its addition to each color plane (3 cycles), this leads to
a complexity of 63HW cycles when a 9 × 9 filter is used at R/B pixels and
47HW cycles when a 7× 7 one is used, almost one third of that of the direct
RGB algorithm [9] for the same quality. Note that in [8], Hel-Or proposed a
method to obtain unique filters for each pixel for block shift-invariant algo-
rithms in order to apply efficiently the algorithm using a unique block-shift
invariant convolution. At the opposite, we see that for the method described
in the present paper, decomposing the global impulse responses into two steps
(luminance filter and then chrominance filters) is algorithmically more effi-
cient.

5 Conclusion

We presented a practical implementation of a linear Wiener demosaicing using
a novel stacked superpixel notation which was tested on an image database
with the Bayer color filter array. This algorithm picks up the optimal linear
combinations of pixels in the CFA to retrieve the color image using three high-
order filters, one per color channel. By decomposing the single-sensor image
into luminance and chrominance, the algorithm can be implemented in a much
more efficient manner without any loss of quality. Indeed, the chrominance sig-
nal being a low-pass signal, low-order filters may be used for its interpolation.
Only the luminance filters has to be high order. This decomposition results
in the increase of efficiency in the implementation of linear demosaicing algo-
rithms.
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Fig. 9. Additional cropped images reconstructed with the present method.

Non linear methods, such as directional interpolation, result in a reconstruc-
tion with less artefacts, but the spectral considerations of luminance and
chrominance in CFA images may be helpful for the understanding of color
mosaic images and, more generally, for the understanding of color imaging.

Acknowledment

The authors are very grateful to Sabine Süsstrunk for her helpful comments.
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