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Abstract
Digital cameras overlay a Color Filter Array (CFA) over the

sensor which sub-samples the color information of the scene. The
full color image is then recovered using a class of algorithms
known as demosaicing. The color filters used for CFA are pre-
dominantly Red, Green and Blue. In this article we propose an al-
gorithm based on Linear Minimum Mean Square Error (LMMSE)
which can demosaic images from any color (linear combination of
Red, Green and Blue) filter arranged in any order in the CFA. We
also propose optimum CFAs based on combination of RGB col-
ors which outperform the state of art CFAs in image reproduction
with less computational complexity.

Introduction
We need to add light intensities of three color primaries at

each pixel to produce color images. To capture this information of
three colors simultaneously requires a three sensor system which
is expensive. Therefore, today digital cameras overlay a Color
Filter Array (CFA) on the sensor to sub-sample a scene into a mo-
saic of colors. This mosaiced image is then processed to recover
the full color image, known as demosaicing. Red, green and blue
are the colors used predominantly in these filters. It corresponds
qualitatively to the phosphors (CRTs) or color filters (LCDs) used
in the display monitors and therefore well suited.

The classic Bayer CFA [7] is ubiquitous in todays digital
cameras. However it has its limitations as common demosaicing
algorithms give false colors and artifacts due to periodic nature of
arrangement. This is compensated by using increasingly complex
algorithms like edge preservation ones which demosaic along a
contour and not across it [12, 15, 17, 18, 22–24, 33, 39, 40]. How-
ever this has its own computational cost, which usually forces de-
signing specific processors for embedded real time demosaicing.

In digital cameras our choice of color filters is not limited to
RGB and in this paper we try to identity which color filter choices
and their arrangement can give us the best image reproduction
using computationally simple algorithms.

In the late 1990s and early 2000s cameras did make use of
Cyan, Yellow, Magenta or even Emerald colors in the CFAs. Ko-
dak is known for using CYYM [7], Canon and Nikon for CYGM
[35] and Sony for RGBE [36] color filters in their cameras (Fig-
ure 1). Recently, white (absence of any color filter) has also made
its appearance as it theoretically helps to recover more dynamic
range and therefore has applications in low light photography.
Lately there has been a renewal in designing optimal CFAs con-
sidering more than three primary (RGB) colors. For the purpose
of this paper we limit ourselves to considering new color filters as
linear combination of RGB color filters as in several other stud-
ies [6, 8, 14, 16, 38]. We term these CFAs as multicolor CFAs.

If we perform a two dimensional spatial DFT (Discrete

Figure 1. CFAs with RGB and multicolor CFAs [7,35,36]

Fourier Transform) of a CFA image we see that the luminance and
chrominance components are heavily multiplexed, however for
periodic CFAs like the Bayer they are localized separately [2, 3].
Luminance in the low frequency regions (centered at (0,0)) and
chrominance in the higher. To demosaic successfully, we need to
design filters to separate them as cleanly as possible. The chromi-
nance component is sub-sampled so we need to interpolate it and
add back the luminance to get the final color image. The de-
sign philosophy for CFAs is to move the chrominance compo-
nents away from the horizontal and vertical axis where luminance
has its maximum intensity [6,8,9,11,14,16]. See Figure 2 for av-
erage of two dimensional DFT for CFA images simulated on Ko-
dak database images [1] for several different CFAs. We see that
CFAs like Yamanaka [29], Holladay [26], Bai [6], Hao 40 and
Hao 50 (to some extent) [38] fulfill this criteria. Then we need to
design demosaicing low pass and high pass filters which can sep-
arate luminance and chrominance. Generally this approach works
for periodic CFA patterns but it cannot work for random CFAs as
chrominance components are present across the entire frequency
band.

For random or periodic CFAs we can consider demosaicing
as an inverse problem of estimating the missing colors from the
sampled ones. Let us consider the solution to be a black box with
input as the CFA image and output as the full color image. If we
have a database of true color images we can simulate a CFA im-
age, pass it through black box to get a reconstructed image. The
goal of designing the black box is to minimize the difference be-
tween the original image and the reconstructed image. We can
select from a family of linear [19, 20, 30–32] or non linear so-
lutions [10, 21] to design our black box. The problem with such
black box models is that the number of outputs should be less than
the inputs to ensure that the problem is overdetermined. However
this is not the case for the demosaicing problem, therefore the so-
lution is not stable. To overcome this limitation we introduce the
notion of neighborhood to increase the inputs. A non linear solu-
tion could work better than a linear one as it allows greater degree
of freedom in designing the black box, however it could overfit.
Therefore we choose a linear solution for our model as it is very
fast and allows us to quickly optimize the CFA color selection. In
the next section we explain the matrix model of our Linear Mini-
mum Mean Square Error (LMMSE) based solution. Also then we
find the optimal CFA pattern which gives the best performance by



Figure 2. Average two dimensional spatial DFT (Discrete Fourier Transform) for all CFA images constructed from the Kodak database. Each sub-image

corresponds to a CFA, ( f x = 0, f y = 0) corresponds to the center of sub-image. In blue are low values and red are high values. Sub-images (a) Bayer [7], (b)

Yamanaka [29], (c) Holladay [26] (d) Bai [6], (e) Hao40 [38], (f) Hao50 [38]

solving a constrained minimization problem.

Model for Demosaicing for multicolor CFAs
Let us consider Y to be a RGB image of size H rows, W

columns and P = 3 color channels. X is the corresponding CFA
image of size H rows and W columns. For modeling we con-
vert these images into column vectors such that the demosaic-
ing problem can be expressed as matrix multiplication. This
helps in expressing the problem in linear terms. Also our choice
of algorithm is block shift invariant, the same operation is re-
peated for each basis pattern of size h rows and w columns. For
e.g., in Bayer CFA h = w = 2. We unfold Y as column vectors
y of size Phw×HW/(hw) and X as column vectors x of size
hw×HW/(hw), unfolding each basis pattern as single column.
Any of our new color can be considered as a linear combination
of three primaries red, green and blue. So let us define C to be
an artificial color image, such that Ci = αiR+βiG+ γiB. We can
consider as many colors PC as the size of basis pattern h×w,
i.e. PC ≤ hw. Here white is a case where α = β = γ = 1. We
could also consider white to be α = β = γ = 1/3, however ours
being a linear model, the demosaicing operator we will define
later is invariant to this scaling. We can now express c of size
PChw×HW/(hw) which is unfolded image C of size HWPC as:

c = Ay (1)

where A is matrix of [αiβiγi] for each element in y, of size PChw×
Phw. For example for a RGBW CFA as shown in Figure 1, the
matrix A will be

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗


1 0 0
0 1 0
0 0 1
1 1 1


where⊗ is the kron operator

Now x is the CFA image in multi colors which is M projection of
c. M is hw×PChw matrix that transforms c full color image vector
into x mosaiced image vector by choosing selectively according
to spatial arrangement of colors.

x = Mc

x = MAy (2)

See Figure 3, for the visual representation of the same. The
calculation of demosaicing matrix D with LMMSE using slid-
ing neighborhood (nh,nw) has been described for RGB CFAs [5].
Here we will unfold each x basis pattern plus neighborhood pix-
els using the constant neighborhood giving a size of x1 equal to
(h + nh − 1)(w + nw − 1)×HW/(hw) [4]. Similarly for y, we
write y1 which incorporates neighborhood. Now the computation
of the demosaicing matrix from couples (x1,y)i constructed from
the database is given by the following equation:

ŷ = Dx1

D = Ei=1..k{(yxt
1)(x1xt

1)
−1} (3)

We use this D to calculate ŷ, the demosaiced image. It is pos-
sible to design a matrix M1 having size (h+nh−1)(w+nw−1)×
PC(h+nh−1)(w+nw−1) that transform a neighborhood in the
color image vector c into a neighborhood of the mosaiced image
x1, x1 = M1c1. Let A1 be matrix A with neighborhood incorpo-
rated. A1 is now of size PC(h+nh−1)(w+nw−1)×P(h+nh−
1)(w+ nw− 1). So c1 can be expressed as c1 = A1y1. It is also
possible to design a matrix S1 that transform the vector y1 into
the vector y, y = S1y1, such that it suppresses the neighborhood
and selects the central pattern. With these two matrices, D can be
expressed as:

x1 = M1A1y1 and y = S1y1

D = Ei=1..k{(S1y1yt
1At

1Mt
1)(M1A1y1yt

1At
1Mt

1)
−1}

= (S1RAt
1Mt

1)(M1A1RAt
1Mt

1)
−1

where R = Ei=1..k{y1yt
1}

k is number of images in a database (4)

So starting from CFA image x in the artificial color domain C we
can do demosaicing and directly recover a full RGB image. This



Figure 3. Matrix model of the multicolor CFA image formation without considering neighborhood

is an advantage of considering C to be linear combination of RGB
and not an arbitrary color.

Finding Optimum CFA arrangement
Now for demosaicing any given CFA we need to generate

its S1, M1, and A1 matrices. We calculate D as per equation 4.
We now need to multiply D to the x1 (unfolded CFA image) to
get back the color reconstructed image. We use average MSE as
metric for estimation of image quality for a CFA across images of
a database. Our model being linear we can express average MSE
as a trace of matrix multiplication as follows [26].

AverageMSE =
∑MSE

k

=
∑∑(ŷ− y)2

kHWP
=

∑∑(ŷŷt − ŷyt − yŷt + yyt)

kHWP
(5)

= ∑∑(DM1A1y1yt
1At

1Mt
1Dt −DM1A1y1yt

1St
1−

S1y1yt
1At

1Mt
1Dt +S1y1yt

1St
1)/kHWP

replacing by R from equation 4

= trace(DM1A1RAt
1Mt

1Dt −DM1A1RSt
1−

S1RAt
1Mt

1Dt +S1RSt
1)/Phw

The above term is independent of CFA image x and gives
us an indicator of performance directly from the cross correlation
matrix R. Therefore by evaluating this equation once we directly
compute the average MSE and therefore it is very fast compared
to averaging explicitly on k images. We used the Matlabs fmincon
function using active-set algorithm [13, 27, 28] to find the matrix
A which gives the minimum of average MSE for a given basis
pattern size.

Results
We used the above methodology to find the optimum mul-

ticolor CFA (see Figure 4), CFAs labelled h×wm. We used our
algorithm to test some state of the art multicolor CFAs. We also
compared results of algorithm to those reported by other authors
for their respective CFAs. The metrics we tested our algorithm
for is average PSNR µ , as

Average PSNR µ =
∑PSNR

k
= (∑(10log10 (

1
MSE

)))/k

(6)

Note this is not the same as 10log10
1

AvgMSE which can be evalu-
ated through equation 5. We use a neighborhood of 10 for eval-
uating our algorithm. We leave a border equal to neighborhood
size, 10 here. Also we clip the images between [0 255]. For in-
stance µ for Bayer CFA is 38.90dB for unclipped and 39.13dB
clipped. We also tested color SSIM (average SSIM over RGB
channel) [34], color difference ∆E, variance of PSNR for indi-
vidual RGB channel (lower value indicates all color channels are
well reconstructed) σrgb and variance of PSNR across all images
in database σ . In the two tables the values we report are averages
for all images in the database.

In the Table 1, the first subpart shows the comparison of the
state of art CFAs with our LMMSE algorithm compared with the
best state of art algorithms. Starting with Bayer, LLSC [21] has
the best performance but it takes approximately 6.5 minutes to
process a single image. ACUDE [38] is next but with the code
available on their site it took approximately 1.6 hour to process a
single image. Then we have algorithms like LPA-ICI [25] which
at 40.52dB compute in around 1s. Although the performance of
LMMSE is poor for Bayer CFA, it is considerably faster. For Hi-
rakawa, Condat, Bai, Hao 4b CFAs our method outperforms oth-
ers. Then for CFAs with white pixels like Hao40, Hao50, Hao60,



Figure 4. All CFAs. (a) Bayer, (b) RGBW, (c) Hirakawa [16], (d) Condat [9], (e) Bai [6], (f) Hao 4a, (g) Hao 4b [14], (h) Yamagami [37], (i) Kodak 2.0, (j) Sony

RGBW, (k) Hao40, (l) Hao50, (m) Hao60 [38] , (n) 2x2m, (o) 4x4m1, (p) 4x4m2, (q) 6x6m, (r) 8x8m, (m) 10x10m.

Table 1: LMMSE for Kodak database. Other represents the
value from the best state of the art algorithms known to us. 1

is LLSC [21]. 2 is LS Condat. 3is Bai [6]. 4 is ACUDE [38]. Refer
to Figure 4 for the CFAs.

LMMSE Other
CFA µ SSIM ∆E σrgb σ µ

bayer 39.13 0.9913 1.40 4.85 6.22 41.461

hirakawa 40.45 0.9933 1.49 2.97 5.72 40.362

condat 40.58 0.9938 1.49 1.18 6.23 40.112

bai 40.77 0.9939 1.50 1.76 6.11 40.383

hao4b 40.75 0.9938 1.52 1.47 5.78 40.734

hao4a 40.49 0.9938 1.50 1.23 5.97
kodak2.0 38.43 0.9902 1.80 2.21 5.84 38.704

sonyrgbw 37.38 0.9882 1.95 3.54 5.66 38.104

hao40 38.66 0.9911 1.71 0.70 5.64 38.934

hao50 39.07 0.9917 1.69 2.23 5.86 40.614

hao60 37.45 0.9884 2.17 7.67 5.32 37.514

RGBW 39.74 0.9926 1.59 1.89 5.69
yamagami 37.14 0.9874 1.99 3.96 5.93

2x2m 40.08 0.9930 1.54 1.68 6.40
4x4m1 41.11 0.9944 1.44 0.72 5.95
4x4m2 41.12 0.9943 1.44 0.81 5.94
6x6m 41.09 0.9943 1.44 0.83 5.88
8x8m 41.09 0.9943 1.46 0.76 5.86

10x10m 40.51 0.9936 1.46 0.79 5.66

Sony RGBW and Kodak 2.0, ACUDE [38] is the best performer.
We earlier mentioned the limitation of Bayer CFAs and require-
ment of computationally expensive algorithms to overcome that.
Therefore we recommend multicolor CFA in the lower sub-part
of above table which show the best CFAs we found for size 2
to 10. We present two CFAs of size 4x4 to demonstrate that the
CFAs found by our optimization process are not the best one but
rather one of the several good performers. We are able to achieve
a PSNR of 41.12dB in less than 0.2s which shows the efficiency
of our implementation. In general LMMSE takes between 0.1s
to 0.6s, depending on CFA size. Figure 5 shows the crop of the
fencing region of the Lighthouse image from the Kodak database.
For CFA size of 4x4 and higher it is color noise free.

Table 2 shows the results for our algorithm on the McM
database [40]. Although we found ACUDE to have a better
PSNR, yet it is computationally less efficient.

Table 2: LMMSE for McM database. In Other best results were
from ACUDE [38].

LMMSE Other
CFA µ SSIM ∆E σrgb σ µ

bayer 35.70 0.9830 3.35 7.96 8.99 36.384

hirakawa 35.22 0.9821 4.19 3.41 9.49 34.24

condat 36.04 0.9851 3.99 0.94 9.23 35.424

bai 35.24 0.9831 4.43 0.89 9.62
hao4b 35.63 0.9838 4.25 0.70 9.62 35.644

hao4a 35.84 0.9845 4.14 1.36 9.13
kodak2.0 34.74 0.9803 4.38 1.60 9.27 35.154

sonyrgbw 34.46 0.9788 4.47 1.84 9.29 34.874

hao40 35.50 0.9832 3.96 1.40 9.06 36.214

hao50 35.72 0.9831 4.18 3.81 9.51 36.714

hao60 34.64 0.9796 4.83 7.00 9.58 35.314

RGBW 35.86 0.9842 3.76 2.75 9.42
yamagami 34.55 0.9789 4.32 3.13 9.31

2x2m 35.91 0.9845 3.77 4.63 9.47
4x4m1 35.90 0.9849 4.08 1.81 9.46
4x4m2 36.00 0.9852 4.03 2.27 9.40
6x6m 35.71 0.9845 4.18 1.65 9.37
8x8m 35.91 0.9849 4.14 1.86 9.27

10x10m 35.64 0.9839 4.25 1.20 8.93

DFTs of proposed CFAs
Figure 6, shows the average DFT response on the Kodak

database, for the proposed CFAs. It can be seen that for CFAs
proposed from size 4 to 10, it won’t be possible to use frequency
selection method to separate luminance and chrominance.

Discussion
Some of the proposed CFAs have something like a dark

pixel, a pixel with a very low sensitivity. These dark pixels could
lead to increase in noise. Actually with the LMMSE model the
final value of a pixel depends not only on its own but also on
its neighboring pixel and for these dark pixels the contribution of
neighboring pixels compensates. We can mitigate the problem of
noise by substituting dark pixels with normal ones. For instance
for 2x2m, the pixel (1,2) is light blue having γ of 0.357. We can
make it pure blue at 1 and we still get the same µ . Similarly for
4x4m2, we have two dark pixels. We can make pixel (2,2) green



Figure 5. Crop of Lighthouse image for proposed 2x2m, 4x4m1, 4x4m2,

6x6m, 8x8m, and 10x10m CFAs

and pixel (4,4) as blue and we still have same µ . The proposed
CFAs are optimized ones, they are not necessarily the best ones.
We start with a random CFA pattern and stop after a set number of
iterations. We may continue the optimization process or choose
a different random seed and get another random CFA which has
equally good performance.

Conclusion
In this paper we presented LMMSE with neighborhood ap-

proach for demosaicing CFAs, considering color filters as linear
combination of RGB filters. Although it is not clear if these CFAs
are physically realisable, this assumption has been used to pro-
pose optimal CFAs in the literature. We proposed a method to
find the optimized color filter by expressing the average MSE
as a function of the correlation matrix, demosaicing matrix and
other parameters related to CFA patterns. We demonstrated our
algorithm on CFAs with a white pixel also which should allow
increased light sensitivity. The proposed algorithm has the best
performance to computational complexity of those tested. The
algorithm is generic and can be used for any random CFA. The
proposed CFAs have performance higher than 41.1 dB which is
amongst the best results in state of art. The proposed CFAs cannot
be demosaiced by frequency selection method, therefore for ran-
dom CFAs, LMMSE despite being linear is a good solution. We
also found some optimized CFAs had something like a dark pixel.
Despite that the neighborhood compensates the sub-sampling by
the mosaic by adding redundancy and improves the color recon-
struction.
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