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In this paper we present a neural network method for reconstructing a colour image from
a mosaic a chromatic samples, arranged either in a regular or random manner. This
method could be interpreted as a biological plausible method for the human visual system
to reconstruct spatial and chromatic information from the random mosaic of cones in the
retina.

1. Introduction

The human visual system has three kinds of cones for acquiring the colour in the
visual environment in photopic (daylight vision) conditions. The cones have
three spectral ranges of sensitivity and they are called L, M and S for their
preferential sensitivity to Long, Middle and Short wavelength. Contrary to a
colour image where three colours are sampled at each spatial position, in the
human visual system, cones form a single mosaic where they are arranged
randomly [1]. Consequently in the human retina only a single chromatic value is
sampled for each spatial position at a time. This chromatic value corresponds to
the type of cone L, M or S, which is present at the corresponding position in the
retina. One can ask how the visual system is able to give us the sensation of
colour and colour shading from a mosaic of chromatic samples. Moreover we



can ask whether the random nature of the arrangement of these chromatic
samples helps or diminishes our ability to perceive colour.

Another example of a mosaic of chromatic sampling is the digital camera.
Actually, in most digital cameras today the acquisition of the colour image is
done through a single sensor, which is covered by an array of chromatic filters.
The so-called Colour Filter Array (CFA) gives the possibility for the sensor to
discriminate between colours because the filter sensitivities cover three different
ranges, usually Red, Green and Blue (RGB). Thus, in digital cameras we have
to reconstruct three chromatic samples at each spatial position from an image
with a single chromatic sample. This operation is called demosaicing [2]. In
digital camera, the most used pattern is the Bayer CFA from the name of its
inventor and consists of a regular pattern (Figure 4 (a)).

There is no real evidence that the human visual system reconstructs
explicitly three colours information per spatial position such as the demosaicing
process in cameras does [3]. Nevertheless, the spatial and chromatic information
should be known at every position in the visual field to allow human to perceive
shades of colours in natural scenes. Thus, we may suppose that even if the
reconstruction of a colour image with three components does not occur in the
visual system, this kind of representation of colour in an image can correspond
to the information the human visual system needs to allow us to perceive colour.
Thus, by extension, we suppose that the goal of the human visual system for
colour perception could be compared to the ability to reconstruct three
chromatic samples from a mosaic.

This article presents an approach where a neural network is used to
reconstruct the missing colour information from a mosaic image. The method is
applied on a regular and on a random arrangement of chromatic samples. The
use of a neural network gives to the algorithm a biologic plausibility because the
reconstruction is then given by a combination in a local neighbourhood of the
existing pixels. This operation is plausible as a dendritic communication
between neurons in the visual system.

2. Luminance-chrominance decomposition

The fact that the human visual system is sensitive to both achromatic spatial
information and chromatic spatial information independently is well known
since long ago [4]. This could be due to the way we perceived objects with their
own colour automatically segregated from the shading of reflective light coming
onto them.

There is no general consensus on the way the achromatic component is
calculated from the chromatic component sampled by the retina. Actually,



several decompositions were defined following the criterion used. The CIE
recommends the use of the normalised function V(A), which was measured on
human subjects, to be the luminance visibility function.

The representation of a colour image into its achromatic and chromatic
components is also interesting from a point of view of digital image processing.
The following Figure 1 illustrates a decomposition of a colour image with its R,
G and B values into luminance and chrominance components.
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Figure 1: Illustration of the luminance - chrominance decomposition (a) RGB image (b) Red
component (c) Green component (d) Blue component (e) luminance (f) chrominance.

We illustrate on Figure 1 the fact that the interpretation of the colour shade
and intensity level of an image is easier in luminance and chrominance
decomposition than in the RGB decomposition. As an example, consider the
plane front-end. From Figure 1(e) and 1(f) it is clearly a yellow uniform colour
with a shade of intensity from the top to the bottom. However, the same
interpretation from Figure 1(b)-1(d) is difficult.

3. Model of spatio-chromatic sampling by a mosaic of chromatic
samples

Let us define a colour image / with its three chromatic components, Red,
Green and Blue, as follows:
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We can formalize the sampling of a colour image through a mosaic by the
following equation:

Imosaic = z m; (X, y) C[ (x: J/) (2)

Where m; are the modulation functions, which take value 1 if the colour i is
present at position (X,y) and 0 otherwise. Each modulation function m; defines a
submosaic of the chromatic samples of colour i. The modulation functions are
specific to the arrangement of chromatic samples on the mosaic. But these
functions can always be rewritten as a constant part plus a fluctuation part. Let
the constant part called p; be the mean value of the submosaic m;, We may write:

m;(x,y) = p; Tm;(x,y) 3)

In that case, the constant part p; corresponds to the proportion of each
colour sample type in the mosaic. The fluctuation part m; takes the positive
value (1-p;) in presence of the colour sample and negative values -p; elsewhere.
With equation (3) we can rewrite equation (2) as follow:

[mosaic :Zpici(xvy)+z’%i(xay)ci(xay) (4)
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Equation (4) shows that the mosaic image is in fact a sum of the luminance
and the chrominance of the original image. The chrominance is actually
subsampled and multiplexed in the mosaic image. The detail of the model can
be found in Chaix et al. [5].

Figure 2 illustrates the composition of luminance and chrominance in
mosaic images. In this simulation we used a mosaic image Figure 2(a)
represented as a grey level image. We subtracted the luminance image defined
in Figure 1(e) to the image in Figure 2(a) resulting in Figure 2(b). Then we
demultiplexed the image on Figure 2 (b) by regrouping samples of the same
colour sensitivity on their respective colour plane, either R, G or B. This allows
representing that image in colour. Then we interpolate image on Figure 1 (c)
resulting in image on Figure 2 (d). By comparing image on Figure 2 (d) and
image on Figure 1(f) we can conclude that a mosaic image is a sum of the
luminance image plus the subsampled and multiplexed chrominance image.
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Figure 2: Representation of luminance and chrominance in a mosaic. (a) The mosaic image displayed
in grey levels. (b) Image in (a) where luminance in Figure 1(e) was removed. (c¢) demultiplexing of
image (b) by isolating chromatic samples according to the mosaic arrangement. (d) Interpolation of
image (c).

This decomposition does not depend on the arrangement of colour samples
in the mosaic. In the case of a non-periodic arrangement, the demultiplexing is
done the same way, following the position of each colour classes in the mosaic.
Nevertheless, the interpolation of the chrominance could be more complex
because the neighbourhood of colour changes from place to place in the mosaic.
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Figure 3: Fourier representation of the mosaic. (a) The Bayer mosaic (b) The Fourier transform of
the Bayer mosaic. (c) A mosaic with random arrangement of colour samples (d) The Fourier
transform of the random mosaic.

The model of decomposition in luminance and chrominance allows
interpreting the Fourier spectrum of the mosaic image [6]. In Figure 3 (b) we
can identify nine different regions where the energy of the Fourier transform is
localized. The region in the centre corresponds to the luminance signal whereas
the regions in the border correspond to chrominance. In the case of a random
arrangement of chromatic samples, the chrominance is no longer localized, but
is rather spread over the whole Fourier domain as shown in Figure 3 (d). The
localization of luminance and chrominance in the Fourier spectrum has been
used to reconstruct colour image from the mosaic [6]. But this method does not
apply in the case of random arrangement of chromatic samples in the mosaic. It
should be found another method for the interpolation of chromatic samples in
the case of random arrangement. Here we propose the use of a neural network.

4. Method

For simulating the process of sampling by a mosaic we used an image database'
which comprises 24 colour images provided by Kodak. The images are
originally of resolution 768x512 pixels. To reduce the amount of data we apply
a subsampling of each individual image by a factor 4 in horizontal and vertical
direction reducing the resolution to 192x128. To avoid aliasing, we apply the
following low pass anti-aliasing filter before doing the subsampling.

f=2"%g"gwith g¢'=[1 4 10 20 31 40 44 40 31 20 10 4 11(5)

The colour image database has three chromatic samples per spatial location.
We remove chromatic samples accordingly to the arrangement in the mosaic to
compose the input image. We then construct training and testing vector, using
12 images each.

' http://www.cipr.rpi.edu/resource/stills/kodak.html



To construct the vectors we use a neighbourhood of size 6x6 in the colour
image as output vector of the neural network and the corresponding
neighbourhood of size 12x12 in the mosaic image as input vector. Thus the
neural network has the goal of reconstructing the three colours of 6x6 pixels
from a neighbourhood of 12x12 pixels in the mosaic. We use a two layers
neural network with an input layer and an output layer fully connected an
initialized with random weights of mean zeros and variance 0.1. We use Lens
(Light Efficient Network Simulator) [7] to perform the simulation. Once the
network has converged, we use the output of the network given for the test set
to reconstruct colour image. We can then compare the original colour image
with the image reconstruct from the output of the neural network to test the
quality of the reconstruction.

In a first experiment, we use either a Bayer or a random arrangement of size
6x6 as shown in the following Figure 4 (a) and (b) to construct the mosaic. It
should be noted that we can not use a complete random arrangement for the
chromatic samples because in this case the size of the input and output would be
the same as the number of pixels in the image. To be able to train the network it
is important that the position of chromatic samples was the same from a vector
to another. Thus, we use a random pattern of size 6x6 that we tile along the
image.

(a) (b)
Figure 4: (a) Representation of the Bayer mosaic on size 6x6 (b) Representation of the random
mosaic of size 6x6 used for simulation.

In a second experiment, we use the neural network to estimate the
luminance from the mosaic. Thus, the output vector is composed of a
neighbourhood of 6x6 pixel of the luminance computed from the colour image.

5. Results

The result for the first experiment is given in Table 1 and Figure 5. The network
converges quite quickly to a configuration that allows the reconstruction of
colour. The following table (Table 1) shows the PSNR (Peak Signal to Noise
Ratio) between the original colour image and the reconstructed image from the
output of the neural network.



Table 1: PSNR between original image and image reconstruct from the mosaic by the neural network
using either a Bayer or random mosaic.

Bayer mosaic Random mosaic
Image Red Green Blue Total Red Green Blue Total
13 28.0667 26.9426 28.1920 29.4156 27.9650 269115 28.0575 29.2346
14 29.0981 30.4788 29.7122 27.6237 29.0862 305663 29.6630 27.5843
15 28.4966 29.5165 29.0924 27.2336 283348 29.3490 28.7703 27.1830
16 28.5257 29.7463 28.9645 27.2510 282301 29.5722 28.4295 27.0551
17 29.0636 30.4281 29.3598 27.8071 28.9417 30.2747 29.0963 27.8046
18 29.7367 29.4420 29.9980 29.7883 29.4121 29.2422 29.5339 29.4657
19 29.5661 30.4895 30.4456 28.1836 29.4003 30.3338 302847 28.0090
20 27.8741 27.8664 28.4647 27.3612 27.5003 27.6041 27.8171 27.1102
21 29.5636 30.0708 29.7752 28.9273 29.5528 29.9713 29.6641 29.0716
22 287614 29.4025 28.6200 283312 287111 29.6051 28.1625 28.4934
23 27.9490 28.1049 28.4094 27.3959 27.7253 27.9033 28.1576 27.1757
24 29.2061 30.3766 28.8397 28.6059 29.1300 30.3878 28.6826 28.5498

The following Figure 5 shows an example of the reconstruction of colour
image from the mosaic.

(a) (b) (©)
Figure 5: Examples of reconstruction of a colour image (a) using the Bayer mosaic (b) or random
mosaic (c).

We show that the neural network is able to learn how to reconstruct the
colours from the mosaic of chromatic samples in a case of regular or random
arrangement of chromatic samples. The result is not perfect and it remains some
error in the reconstruction such as a blurring and some false colour. However
we have not tested it extensively yet and it is possible that the structure of the
network or the algorithm for convergence could be improved. We also show
that the global level of luminosity is not exactly reconstructed. This is certainly



due to the bias used in the neural network. Finally, although the Table 1 shows
that the PSNR is often higher in the Bayer case than in the random case, the
images show that the random case could be better when a high frequency
pattern is under consideration. This can be shown for example on the window
image of Figure 5, where the false colours are reduced in the random case. This
could be due to the property of the random arrangement of chromatic samples to
reduce the coherence of the error of reconstruction and hence to decrease its
visibility. The result for the second experiment is shown in Table 2.

Table 2: Result for the second experiment

Image Bayer Random
13 29.3712 29.2042
14 30.9713 31.1051
15 29.5052 29.3472
16 29.6361 29.2351
17 29.9640 29.7346
18 30.6322 30.3208
19 31.1623 30.9672
20 29.2731 28.8540
21 30.4569 30.4035
22 29.7240 29.5396
23 29.1436 29.0356
24 29.8412 29.9614

Table 2 shows that the luminance is better reconstructed than R, G and B
channel in term of objective PSNR criterion. This can be a new argument why
the human visual system preferentially uses a luminance and chrominance
approach than direct colour processing.

We have also tried to train a neural network with the chrominance
information to see if the network was able to interpolate the chrominance.
Unfortunately the network does not converge in that case. Thus, we are not able
to show the colour results for the case of luminance-chrominance
decomposition. The reason why the network diverge is not known, it may be
due to the special statistics of the chrominance information of natural scene.

6. Discussion

In their paper, Doi et al. [8] show that the receptive field of ganglion cells at the
output of the retina could be explained as an independent component analysis of
natural scene when sampled by the random arrangement of chromatic cones in
the retina. Here we show that the spatial and chromatic information could even
be reconstructed from the mosaic with a good accuracy. We also show that the



approach consisting of estimating luminance gives better results, although we
are not able to reconstruct the chrominance by that way.

In this paper we used a supervised implementation of the neural network,
given the input and the output to reach the convergence of the network. In the
visual system if this kind of reconstruction happens, it remains to explain how
the network would converge without having recourse to a supervised method
for learning.
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