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Abstract. Most of digital cameras today use a color filter array
(CFA) and a single sensor to acquire color information of the
scene. In this article, we ask which arrangement of colors
in the mosaic of the CFA provides the best encoding of the
scene. As a solution of the inverse problem of demosaicing, we
consider a linear minimum mean squared error model. We used
redundancy given by the neighborhood on the sampled image to
ensure the stability of the solution. For some CFAs, LMMSE with
neighborhood provides equivalent reconstruction results and less
variability among the image content compared to edge-directed
demosaicing on the Bayer. LMMSE allows comparing CFAs of
regular pattern with random ones. We show that mosaics with
random arrangement of colors and quasi equal proportion of RGB
provide best reconstruction performance. c© 2016 Society for
Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2016.60.5.050406]

INTRODUCTION
A color image is composed with the intensity of three
different channels covering three different domains of
wavelength, usually in the Red, Green and Blue part of the
visible spectrum. To acquire such an image with simplicity
and low cost, a single sensor is used which is covered with a
color filter array (CFA) to provide several color components
to the acquired image, arranged in a mosaic. Thus only
a single color is sampled at each pixel and reconstruction
of missing colors (called demosaicing or demosaicking) is
required.

The Bayer’s CFA1 is the most commonly used CFA
and several methods have been proposed for improving the
quality of the reconstruction. Edge-directed2 methods which
interpolate along contours and avoid interpolation across
them are known to be the best method for the Bayer CFA.
Thesemethods are usually followed by a post-processing that
improves the reconstructed image.3–10 But the computation
time needed for these methods makes them generally too
costly for embedded systems. Moreover in practice, the CFA
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image produced by a sensor is less constraining than the
simulated image on the Kodak database11 (the most used
one on demosaicing) which contains moiré due to higher
frequency content compared to the number of pixels. This
is even worse for recent cameras with small pixels size.12
Because these methods are optimized for Bayer CFA they are
not very useful for general CFAs such as those with random
arrangement of color.

Some studies show new CFA patterns, but either
they are designed empirically.13–15 Many authors have
proposed optimal CFAs arrangement based on the criteria
of frequency representation and selection.16–20 Indeed, the
mosaic arrangement of the filters in the CFA could be
interpreted as a spatial multiplexing of color components
and has a simple expression in the Fourier domain.21–23
The spatial Fourier representation of the CFA allows simple
linear demosaicing by selecting the part of the spectrum
that corresponds to luminance and color components. Some
authors assume the RGB filter’s spectral sensitivity can
be modified and consider composed colors as a linear
combination of RGB and propose an arrangement of these
new colors that optimize the frequency representation and
estimation. But there is no evidence that these new colors can
be easily produced from physical composition of the RGB
pigments. In addition, the simple mathematical expression
of spatial multiplexing is due to periodicity or regularity
in the mosaic. The locality of chrominance is lost for a
random arrangement of color on the CFA. This prevents the
application of frequency selection method on random CFAs.

Demosaicing is an inverse problem to retrieve the
missing colors from the sampled ones. This problem has
no general solution. To solve it, we must consider a model
of the solution family (solutions appear as a functional for
which a set of parameters are optimal for the problem) and
provide the best estimated solution inside this family. It is
almost straightforward to consider linear solutions.24 We
therefore restrict here the solutions to be linear application
from Rn to Rm, n will be the dimension of the mosaiced
image plus neighborhood’s space andm the dimension of the
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(a) (c) (d)(b)

Figure 1. Detail of the unfolding of images into vectors (a) Mosaiced image ICFA with a neighborhood shown (b) Unfolding of the mosaiced image into
matrix x1 (c) Color image I (d) Unfolding of the color image into matrix y.

reconstructed color image’s space (See next section for detail
on the image formation model).

A general linear approach for demosaicing consists of
minimizing the squared error of reconstruction and derives
a linear least square approximation of the solution.25,26
This method is general and applies equally well to any
CFA. Because most of the CFAs are a replication of a
basis pattern, a shift invariant solution can be found, which
simplifies calculation by considering only the basis pattern
(called super-pixel) replicated on the surface of the CFA, a
2 × 2 array for Bayer’s pattern.26,27 Despite the generality
of the method which allows optimizations,28–30 the solution
obtained with such a procedure is unstable because the
number of unknowns is larger than the number of inputs.
An elegant way for improving the number of inputs is
to consider a closed neighborhood around the position
to be interpolated. Intuitively, this reinforces the statistical
learning of the solution with existing data and provides good
reconstruction results.31–36 This framework allows the use of
a random pattern inside the super-pixel37 even if the spatial
frequency spectrumof luminance and chrominance for these
CFAs is aliased.

Based on the LMMSE demosaicing we can directly
compare the performance of any CFA pattern to reconstruct
the desired image from the acquired image over a similar
reconstruction method. In the next section, we describe
the formalism for demosaicing with linear minimum mean
square error, learning over a database with generalized
neighborhood. We then compare the performance of several
CFAs.We also show the comparative performance with some
of the state of the art methods applying on Bayer CFA.

LINEARMODEL OF IMAGE FORMATION
Writing a matrix model of image formation requires
unfolding the matrix representing images into vectors,
then finding a matrix–vector multiplication that relates the
expected image from the acquired one.26 In the case of
demosaicing we suppose that the mosaiced image results
from a color image multiplied by a projection matrix.32 But

there are many ways of unfolding images that results in
different models.

Classically an image is unfolded into a column vector.
For the demosaicing problem it is expressed as follows:
consider a color image I having H rows, W columns and P
color channels and the mosaiced image ICFA having H rows
and W columns. We can construct the column vector y of
size PHW× 1 corresponding to the color image and x of size
HW× 1 corresponding to the mosaiced image (Figure 1).26
In this case the model of image formation can be expressed
as:

x=My (1)

whereM is aHW×PHWmatrix that transforms the vector y
corresponding to a color image into a vector x corresponding
to the mosaiced image.

The demosaicing matrix D, we wish to estimate is the
reverse operator that gives the estimate ŷ from x. It can be
calculated from several couples (x, y)i constructed from a
databasewith theWiener filtering approach that corresponds
to the least square error estimator.

D such that ŷ=Dx, D= E i=1...k
{yxt (xxt )−1

}, (2)

With E i=1...k
{} is the expectation over the k images of the

database. In this modelD is of size PHW×HW. This model
implies huge matrices as a model because the dimension of
M or D is of size of the number of pixels in the images.

A better model is given by considering the block
shift invariant property of the mosaic. Since the mosaic is
composed by a super-pixel of size h× w replicated on the
whole CFA of size H ×W , we can unfold the image for hw
instead of HW. In this case the model formulation (Eq. (1))
remains the same but y is now a Phw×HW/(hw) matrix
containing the set of vectors built from one super-pixel
in the color image. And x is a hw×HW/(hw) matrix
corresponding to the set of vectors built from one super-pixel
of the mosaiced image. Thus M is a hw × Phw matrix (i.e.
4 × 12 for the 2 × 2 super-pixel of the Bayer CFA) and
D is a Phw × hw matrix31,32 which greatly reduces the
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computational complexity required to calculate D and apply
the reconstruction to the acquired data. But, with this model,
the number of values to be retrieved is P times larger than the
acquired values making the estimate quite unstable.

To reinforce the stability of the solution, a neighborhood
of x could be used. Let x1 be a vector built from x and its close
neighborhood of size nh× nw , x1 =Nnh,nw (x). Nnh,nw (.) is a
function that increase the number of rows of a vector by the
nh× nw neighbors of each element of the vector. In this case,
x1 is of size hwnhnw ×HW/(hw) and the number of rows of
x1 could be easily larger than Phw.

In this later unfolding, the computation of the demo-
saicing matrix from couples (x1, y)i constructed from the
database is given by the following equation:

D such that ŷ=Dx1, D= E i=1...k
{yxt1(x1xt1)

−1
}. (3)

Similar to the Eq. (1), it is possible to design a matrix
M1 that transform a neighborhood in the color image (vector
y1) into a neighborhood of the mosaiced image x1, i.e.
x1 = M1y1. It is also possible to design a matrix S1 that
transforms the vector y1 into the vector y, i.e. y= S1y1, such
that it suppresses the neighborhood and selects the central
pattern. With these two matrixes, D can be expressed as:

D= S1RM t
1(M1RM t

1)
−1
, with R= E i

{y1yt1}. (4)

Equation (4) implies that we need to calculate the
correlation R only once from the color images with their
neighborhoods in the database. Then, for a particular CFA
into consideration, we can constructM1 and S1 and compute
the optimal demosaicing filter in the least square sense. Thus,
with the same R we can compare the performance of any
CFA.

In Ref. [33] a similar notation to Eq. (4) is provided,
but the neighborhood size is restricted to an integer number
of the size of the super-pixel which becomes intractable
when super-pixel size increase and is less flexible. Here, we
proposed a generalization for any CFA with any super-pixel
size and any arrangement of colors inside the super-pixel.
The construction ofM1 and S1 for a particular arrangement
and a particular neighborhood is not trivial and cannot be
described more here.

SIMULATION
With the framework given in the previous section, we can
easily compare the performance of several CFAs with any
super-pixel size and any arrangement of colors inside the
super-pixel as well as any size of the neighborhood used for
controlling redundancy. The framework works as follows:
for any color image taken from the database, we compute
y1, composed by the set of vectors constructed for every
pixel inside the super-pixels and theirs neighbors. From all
y1 taken from all images in the database, we compute R
according to Eq. (4). Then we design S1 andM1 for the CFA
and the neighborhood size. We compute D with Eq. (4).

The performance of the demosaicing is then computed
as follows: for each image in the database, we compute the

mosaiced image by subsampling the color image according
to the CFA. Then we compute the vector x1 using the
neighborhood. We apply D on x1 as in Eq. (3) to reconstruct
the estimate ŷ and compare it to y by calculating PSNR (A
border equivalent to neighborhood size was removed in the
calculation).

We compute a PSNR from the whole mean square
difference between the original and reconstructed image for
all pixels and three PSNRs, one per color channel. We use the
average of whole PSNR over all the images in the database,
µ as an estimator of the overall quality of the reconstruction.
The variance of thewhole PSNR along image number,σ gives
an estimate of the adequacy of the method to encode any
particular image. To test the method to equally encode any
colors, we used the average of the PSNR per channel, µR,
µG and µB as well as the average of the variance of PSNR
per channel, σRGB. Finally, the SSIM38 (computed the three
channels together) is also provided to estimate the quality of
the image in term of visual factors.

We perform the analysis on two databases (Kodak,11
McM39) for comparing the performances. The Kodak
database is known to have much higher frequency compared
to the number of pixels andwith low colorfulnesswhich favor
the edge-directed and post-processing methods. The McM
database has been proposed as having more realistic images
in term of high frequency and colorfulness. We generally
used all the images from the database for learning the
demosaicing operator. We also implement a leave-one-out
simulation where the image to reconstruct is not in the set of
images used to learn which are presented in supplementary
material.42

Systematic evaluation for 2×2, 3×3 super-pixel size of
the CFA
As a first example of performance comparison, we consider
all the different combination of three colors R, G, B on a 2× 2
super-pixel. The number of different possible arrangements
is 34
= 81. However, notice that a lot of them are symmetrical

than others. We also consider all the different combinations
of the 3× 3 super-pixel, there are 39

= 19, 683 different ones.
Table I and Figure 3 (top row) shows the best 2 × 2

arrangements calculated over the Kodak databases. In term
of average PSNR, µ, the best arrangement is not the Bayer
RG; GB but slightly modified one where the arrangement
is RG; BG (2 × 2 #1). If we look at the average variance
between PSNR calculated on individual color channels in
the reconstructed images over the database, σRGB, the best
is RB; GB (2× 2 #2) arrangement. Also, if we look at the
average variance of the overall PSNR, σ , along all the images
in the database, the BR; GG (2× 2 #3) is the best. This shows
the following criterion that either twice of green or blue is
preferred but the color represented twice is never on the
diagonal.

Table I and Fig. 3 (top row) also shows the result for
evaluating all the different 3× 3 CFAs. Again depending on
the criterion (µ, σRGB, σ ) three different optimal ones are
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Table I. Comparison of CFA for Kodak database, nh = nw = 10.

CFA Kodak
µ µR µG µB σRGB σ SSIM

Bayer 38.90 38.57 41.53 37.59 4.64 6.57 0.9911
2× 2 #1 39.51 39.41 40.36 38.99 1.01 7.21 0.9923
2× 2 #2 39.10 38.71 39.39 39.32 0.53 7.64 0.9917
2× 2 #3 39.12 38.27 40.27 39.22 1.78 5.01 0.9916
3× 3 #1 37.16 37.40 37.13 37.02 0.22 6.34 0.9881
3× 3 #2 38.96 38.70 39.48 38.78 0.39 6.81 0.9913
3× 3 #3 36.36 37.40 35.81 36.13 1.11 5.41 0.9859
4× 4 #1 40.26 40.51 40.32 40.05 0.40 6.44 0.9933
4× 4 #2 40.40 41.00 39.82 40.56 0.76 6.39 0.9936
Yaman. 38.73 37.82 40.95 38.19 3.46 6.81 0.9910
Lukac 39.35 38.70 41.47 38.57 3.13 6.31 0.9918
Holladay 38.57 39.23 39.62 37.30 1.87 6.05 0.9908
Cnrs 39.78 40.01 40.02 39.39 0.40 6.42 0.9927

shown. Among these three no one is regular and all three
show an almost equal number of RGB.

Figure 2 shows the histogram of the average PSNR, µ,
for all of 3× 3CFAs. The three first peaks correspond toCFA
with only one or two colors. As shown in Fig. 2(b), among the
best hundred 3× 3CFAs, some are symmetrical but none are
perfectly regular.

Comparison of CFAs under LMMSE
We select several CFAs (Fig. 3) proposed in the literature that
we have tested with LMMSE demosaicing. We also compute
the best arrangement of the 4 × 4 (they are 3ˆ16 > 43
Millions) by pruning those with high bias between colors
based on the previous results for 3 × 3 and 2 × 2. We
also add the best 2 × 2 and the original Bayer in the
comparison. Figure 4 shows the performance of CFAs along
the neighborhood size, which clearly favor the best 4× 4 #2
for a neighborhood of size larger than 3. This CFA is also
performing well with variance estimators showing its ability
to equally encode colors and perform well for any image in
the database.

Table I shows the number of the evaluation parameter
estimated based on a neighborhood of 10× 10 for the CFAs.
In the table we highlight the number that is the best within
that category. For example, the best 2× 2 for average PSNR,
µ is given for the 2× 2 #1.We show the result for the 4× 4 #1
because even if it is not the best for average PSNR, it has very
good visual performance on the fence of the lighthouse image
as shown in the supplementary material.

Comparison with other methods on Bayer
We compare the best 4 × 4 using a neighborhood of 10
with the state of the art method applying on the Bayer CFA
using both the Kodak and McM database. The following
Tables II and III show the evaluation parameters as well as the
computation time on Matlab. The code for the algorithms is
found on web site.40

(a)

(b)

Figure 2. (a) Histogram of the PSNR for all 3×3 CFAs. A large number of
them show more than 38dB of average PSNR. (b) The top hundred 3×3
CFA’s for average PSNR learned over the Kodak database (The PSNR
ranges between 38.96 and 38.70 for the top hundred for neighborhood
of 10 for Kodak database). See supplementary material for the result on
McM.

Figure 3. Different CFA pattern used for comparison. From left to
right top row, Bayer, 2 × 2 #1, 2 × 2 #2, 2 × 2 #3, 3 × 3 #1,
3× 3 #2, 3× 3 #3, bottom row, 4× 4 #1, 4× 4 #2, Yamanaka,14
Lukac,13 Holladay halftone,30 CNRS.15

For the Kodak database, the best 4 × 4 has almost
the same performance as the best edge-directed method
with a far less variance between colors. It has also a better
variance among images on the database aswell as SSIM38 and
computation time per image. For theMCMdatabase, the best
4× 4 under LMMSE perform better than any other in the
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(a)

(c)

(b)

Figure 4. Evaluation of CFAs with LMMSE with increasing neighborhood
(a) Average PSNR, µ. (b) Variance of PSNR per channel, σRGB. (c)
Variance of PSNR with image number, σ .

test for almost all these performance parameters (Table III).
The supplementary material shows some examples of
reconstruction based on particular area on images.

For sure the extent of the size of the super-pixel provides
a better encoding of the scene as shown by the objective
criteria such the PSNR. But in our simulations, we also
see that the random arrangement of colors in the CFA
also reduces the visibility of the noise generated by the

Table II. Comparison between the best 4× 4 with LMMSE on Kodak database and
other methods.

Method Kodak
µ µR µG µB σRGB σ SSIM Time (s)

4× 4 #1 40.26 40.51 40.32 40.05 0.40 6.44 0.9933 0.64
4× 4 #2 40.40 41.0 39.82 40.6 0.76 6.39 0.9936 0.65
LPA-ICI 40.52 39.63 43.0 39.91 4.45 7.08 0.9874 1.15
LIAN 39.53 38.59 42.13 38.86 4.63 7.39 0.9855 0.31
DA 37.82 37.38 40.66 36.54 5.27 5.82 0.9829 0.09
HD 37.72 36.94 39.59 37.26 2.82 8.64 0.9799 28.11
SA 39.01 37.92 41.56 38.53 4.57 6.37 0.9850 1.30
DFPD 39.17 38.32 41.23 38.70 3.25 7.83 0.9837 1.55
DLMMSE 40.05 39.12 42.58 39.53 4.79 6.92 0.9866 28.84
AP 39.25 38.29 41.73 38.70 4.40 6.07 0.9849 1.61
LI 35.66 35.16 38.83 34.25 6.05 10.24 0.9729 0.02
HA 36.87 36.75 38.05 36.08 1.20 10.40 0.9769 0.08
Bilinear 30.19 29.25 33.07 29.26 4.94 10.94 0.9160 0.04

Table III. Comparison between the best 4× 4 with LMMSE on McM database and other
methods.

Method McM
µ µR µG µB σRGB σ SSIM Time (s)

4× 4 #1 35.44 36.96 35.89 34.14 2.83 9.32 0.9832 0.39
4× 4 #2 35.96 37.3 35.55 35.4 1.84 9.33 0.9851 0.40
LPA-ICI 34.70 34.32 37.88 33.29 6.62 13.20 0.9655 0.64
LIAN 34.91 34.55 37.95 33.52 6.13 10.40 0.9673 0.17
DA 32.22 31.82 34.69 31.07 4.16 13.33 0.9528 0.06
HD 33.46 32.94 36.96 32.15 7.94 11.20 0.9576 18.50
SA 32.69 32.56 34.42 31.70 2.71 17.88 0.9529 0.87
DFPD 34.22 33.74 37.17 32.96 5.64 10.77 0.9624 0.99
DLMMSE 34.43 33.97 37.9 33.02 7.93 11.21 0.9647 18.27
AP 33.14 32.79 35.13 32.17 3.01 12.47 0.9567 1.03
LI 34.39 33.94 37.52 32.97 6.03 8.75 0.9645 0.02
HA 34.79 34.58 37.9 33.27 6.87 9.96 0.9654 0.05
Bilinear 32.29 31.65 35.38 31.20 6.59 11.58 0.9487 0.03

LPA-ICI,3 LIAN,41 DA,21 HD,4 SA,5 DFPD,6 DLMMSE,7 AP,8 LI,9 HA,2 are tested with a
border of 15, 4× 4 #1 and 4× 4 #2 reported with a border of 10.

mosaicing/demosaicing process because noise becomes less
structured.

CONCLUSION
In this article we provide a flexible, fast and accurate linear
minimummean squared error demosaicing using the redun-
dancy given by the neighborhood of the sampled image. The
method is quite fast and allows us to systematically compare
the performance of 2× 2 and 3× 3 CFA’s super-pixels and
most of the 4× 4 CFAs.

Compared to frequency selection approaches used today
for optimizing CFAs, our method does not guess the
frequency spectrum of the sampled image by the CFA.
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Rather, it uses a learning procedure that computes optimal
reconstruction filters. Even when the aliasing between
luminance and chrominance is strong (as arising for random
pattern), the method finds good linear reconstruction filters.
We found that the best CFAs are the ones with non-regular
arrangement of colors (some are symmetric along the ±45◦

line) and almost equal number of RGB.
The best known methods for demosaicing are thought

to be those with edge-directed interpolation and post-
processing. We show that the 4× 4 best CFAs give recon-
struction results equivalent to the best nonlinear algorithms
applied on Bayer. It even provides less variability among
colors and particular image in the database. Moreover, it
gives better SSIMevaluation for a less computation time. This
result provides linear demosaicing for being favorably used in
the embedded camera devices.

Statistics of natural images are probably randombecause
a contour or a particular object’s color could potentially
appear anywhere on the images. That is probably why
random CFA perform better than regular one for encoding
the spatial and chromatic structure of natural images.
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