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Abstract: A generic model of color discrimination is pre-
sented. It involves adaptive nonlinearities at photoreceptor
level and in color-opponent pathways. This model, with few
parameters, can reproduce the various aspects of the ob-
served data from six individual observers, as reported in
studies by MacAdam, Wyszecki and Fielder, and Brown and
MacAdam. It is base on two main hypotheses: (1) all the
observers have the same kind of nonlinear adaptive func-
tions; (2) each observer has his or her own coding of color
oppositions. Therefore, for each observer, the mean model
parameters are adjusted to fit all the data in the particular
available experimental conditions. The model is unique, one
set of its parameters depends only on the adaptation state,
the other set depends only on observer’s specific color
coding. We conclude that the observed variability in color
discrimination data stem only: (1) from both difference in
adaptation states, due to experimental conditions; (2) from
inter-observers color coding differences.© 2000 John Wiley &
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INTRODUCTION

Discriminating among colors is a very important function of
the human visual system, and many experimental studies
have addressed the human ability to detect color differences.
Color-matching methods have been used to help under-
standing color discrimination through the analysis of an
observer’s just noticeable differences (JND) between two
lights. Through such an analysis, MacAdam1 showed that

color discrimination thresholds can be modeled by ellipses
in the chromaticity plane that are centered on the chroma-
ticities of the lights to be matched. The size and shape of a
discrimination ellipse depends on the choice of the refer-
ence light. Wyszecki and Fielder2 showed that discrimina-
tion ellipses vary from individual to individual and from one
measurement to the next one for a given individual.

We present here a model of color discrimination that can
account for the ellipses found for different observers and for
different experimental conditions, while explaining the vari-
ability of experimental data. The model allows us to com-
pare results from different studies, and its parameters may
be interpreted in terms of biological functions.

DESCRIPTION OF EXPERIMENTAL DATA

We have chosen to work with color-matching data from six
observers obtained under different experimental conditions.
The data from the first observer, PGN,1 provide color dis-
crimination for a set of reference lights presented on a
constant background level. Matching lights varied in chro-
maticity but not in luminance. With two further observers,
WRJB and DLM,3 data were collected using matching
lights that varied both in chromaticity and luminance. The
three final observers, GF, AR, and GW,2 provide data on
adapting backgrounds, using matching lights that varied
both in chromaticity and luminance.

First, we convert the ellipsoids fitted to data inxyl space
(where luminancel is measured in units of footlamberts)
into ellipsoids expressed in the space of the cone photore-
ceptors’ excitations. The excitations of long-, medium-, and
short-wavelength sensitive photoreceptors define theLMS
space. To convert ellipsoids inxyl space toLMS space, we
first transform the equation that describes an ellipsoid inxyl
space into one that describes the same ellipsoid in theXYZ
space of CIE 1931 standard observer tristimulus values.
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Then we convert them fromXYZ to LMS using the matrix
presented by Smith and Pokorny.4

An ellipsoid is defined by a second-order equation of the
form

VTBV 5 1, (1)

whereB is a symmetric matrix that describes the ellipsoid
parameters, andV is a vector that describes a difference in
chromaticity and in luminance given by

V 5 @dx d y dl#T, (2)

which is the difference between the coordinates [x y,] of an
arbitrary light and the coordinates [x0 y0 , 0] of a reference
light upon which the ellipsoid is centered:

dx 5 x 2 x0, d y 5 y 2 y0, anddl 5 l 2 l 0. (3)

The relationship betweenxyl space and the CIEXYZspace
is given by5

X 5 xY/y,

Y 5 105l, and

Z 5 ~1 2 x 2 y!Y/y. (4)

The linear transformation fromXYZ tristimulus values to
LMS cone excitations is described by a matrixA4:

@L M S#T 5 A z @X Y Z#T. (5)

The symmetric matrixG, which describes an ellipsoid in

LMSspace, is given in terms of the corresponding matrixB
in xyl space as follows:

G 5 JTBJ, (6)

in whichJ is the Jacobian of the transformation betweenxyl
andLMS spaces.

Figure 1 shows color discrimination ellipsoids for observ-
ers GF and WRJB in LMS space. The ellipsoids are dis-
played as cross-sections in planes of theLMS space. For
observer GF, we can see in theLM-plane projection (left
panel) that the narrowest ellipses in theLM plane lie cen-
trally, as pointed out earlier by LeGrand6 and Nagy.7 This
generates a V-shaped function of chromatic sensitivity
along a path going through the ellipses from the upper-left
to lower-right of the diagram. This feature of GF’s data is
not apparent in the data of WRJB, presumably because
discriminability was measured in this case at a different
luminosity level.

THREE LAYER MODEL

Our model of color processing has three layers (see Fig.
2). The first layer simulates the photoreceptor with adap-
tive nonlinearities, acting independently within each
class of photoreceptor, and being governed by the state of
adaptation to the background (L0 M0 S0). Photoreceptors
are known to be nonlinear and adaptive, in order to
operate over a wide range of incident light levels. We
have chosen a Naka–Rushton law to describe the photo-
receptor responseR:

FIG. 1. Ellipsoids in LMS space for observers WRJB and GF enlarged 10 times. The bottom left image shows the «V» shape
function (see text). The narrowest ellipses are in the center of diagram in LM cut (left image).
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R 5 X/~X 1 X0!, (7)

in which X is the photoreceptor excitation level andX0
corresponds to the background level to which the photore-
ceptor is adapted. As shown in Fig. 3, the behavior of the
nonlinearity within a particular range of excitation level
depends on the choice of the background level. As shown in
Fig. 2, the outputs of the first layer are the signalsl, m, and
s of the three photoreceptor classes.

The second layer of the model is linear and provides
color-opponent coding. It transformsl, m, ands signals into
an achromatic signalA and two color-opponent signalsC
and D. The coefficients that describe the color-opponent

transformation of an observer should be adjusted, in order to
optimally match the data.

The third layer of the model (see Fig. 2) is also nonlinear
and simulates a high-level adaptive compression. The func-
tion of this layer depends on the independently set adapta-
tion levels (A0, C0, D0) of the achromatic and color-oppo-
nent channels. This layer’s nonlinearity is described by

R 5 arctan~X/X0!, (8)

which is similar to the Naka–Rushton law of Eq. 7, but can
take into account both positive and negative input signalsA,
C, andD. It is equivalent to two Naka–Rushton laws, one
for positive and one for negative variation of color opposi-
tion.

The third layer output signalsa, c, andd. In our model,
the acd space corresponds to the “perceptual space” in
which color discrimination judgments are to be made;
hence, the transformation of ellipses fromLMS space into
acd space.

We adjust the model parameters so that the observer’s
color discrimination ellipsoids are as spherical as possible in
acd space. The model parameters found in such a way, for
each observer, describe the state of adaptation and color
opposition coding for this observer.

MODEL APPLICATION TO DATA

By applying the Naka–Rushton nonlinearity (Eq. 7) to pho-
toreceptor signals only, it would be possible to transform
ellipsoids inLMScone excitation space into a sphere in the
(adapted) lms space, only if the ellipsoid’s axes were
aligned along theL, M, andS axes (see Fig. 4). Yet color
discrimination data show that the ellipsoids are oriented
more along achromatic and color-opponent axes. We thus
need color-opponent processing to transform basis axesL,
M, andS into A, C, andD. But these signalsA, C, andD are

FIG. 2. The three layers model input are ellipsoids in LMS
space. The first layer transforms these ellipsoids into ellip-
soids in lms space through the nonlinear and adaptive trans-
duction of the photoreceptors. The second layer transforms
the lms ellipsoids into ACD ellipsoids, through a linear com-
bination of channels into one achromatic (A) and two chro-
matic (C, D) channels. The third layer transforms the ellip-
soids in ACD into ellipsoids in acd space through a second
nonlinearity.

FIG. 3. The photoreceptor nonlinear transduction function
has different curvatures following the adaptation state X0.
We make the hypothesis that a constant adaptation state
applied independently on the three kinds of photoreceptors
(constants L0, M0, S0), allows us to transform ellipsoids in
LMS space into spheres in acd space.

FIG. 4. A graphical example of transforming ellipses in
LMS space into circles in lms space. If the axes of the
ellipses are parallel to L and M axes, it is always possible to
transform these ellipses into circles by the nonlinear law.
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still not sufficient to explain the above-mentioned V-shaped
function of chromatic sensitivity. For that, a compressive
nonlinearity (Eq. 8) must be applied to providea, c, andd
signals, which can exhibit V-shaped sensitivities.

An ellipsoid in acd space is defined by the following
equation:

ZTHZ 5 1, (9)

in which vectorZ is given by

Z 5 @da dc dd#T 5 @a 2 a0 c 2 c0 d 2 d0#
T, (10)

and in which the symmetric matrixH is given by

H 5 ~N21!T~P21!T~M 21!TG N21P21M 21. (11)

The terms in Eq. 11 include symmetric matrixG, which
describes the ellipsoid inLMS space (Eq. 6); matrixM ,
which is a linear approximation of the first nonlinearity (Eq.
7), is determined at the center of the ellipsoids inLMS
space; matrixP, which describes linear color-opponent cod-
ing, and matrixN, which is a linear approximation of the
second nonlinearity (Eq. 8), found at the center of the
ellipsoids inACD space.

We use a classical gradient descent algorithm to fit the
color discrimination data, with a cost functionJ as follows:

J 5 ~H 2 I !T~H 2 I !, (12)

in which anacdspace ellipsoid, represented by matrixH, is

compared to a sphere inacd space, represented by the
identity matrixI . The model adaptation parametersL0, M0,
S0, A0, C0, D0, and color-opponent transformation param-
eters of matrixP, are computed in order to minimize the
costJ, for each observer and each experimental condition.
This results in choosing model parameters that make the
color discrimination ellipsoids inacd space as spherical as
possible.

RESULTS AND CONCLUSION

Color-discrimination ellipsoids for observers WRJB and GF
are shown in thecd chromaticity plane ofacdspace in Fig.
5. The loci of Just Noticeable Differences inacd space
approximate spheres much better than they do inLMS
space. Table I shows model parameters, which depend on
observers and experimental conditions.

To estimate how well the model fits the data, we replace
all the ellipsoids inacd space by an average ellipsoid
(instead of taking a mean sphere, we use the mean ellipsoid
to take into account an unknown scale parameter in theacd
space) and then, through a reverse transformation, compute
the corresponding ellipsoid inLMS space. Figure 6 shows
what the single, average ellipsoid inacd space looks like
when transformed back to the originalLMS space. Our
model explains the orientation and size of each observer’s
ellipsoids when the adaptation state is kept constant. It can

FIG. 5. Ellipsoids in acd space. The ellipsoids are not perfectly transformed into spheres, but the difference between any
two ellipsoids is less in acd space than in LMS space. Because the ellipsoids do not have unique sizes and orientations, we
may consider that this is due to measurement noise, for the main reason that the variations do not exhibit any coherence.

TABLE I. Parameters estimated for the three layers model. We can see that the parameters are close to each
other for the same experimental condition (PGN alone, WRJB and DLM, GF and AR and GW), but may vary
substantially between two different experimental conditions.

Param.\Obs. PGN WRJB DLM GF AR GW

L0 141 78 65.2 103 96 96
M0 79 39 32.7 50 45 43
S0 1320 98 95.5 149 135 139
C0 .08 .09 .07 .04 .04 .04
D0 1.19 0.28 0.28 0.17 0.18 0.14
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exhibit a large variety of sizes and orientations inLMS
space (Fig. 6), which match the original data (Fig. 1) very
well. Note also that the model matches the V-shaped sen-
sitivity along the top-left to bottom-right diagonal in theLM
plane of observer GF’s data, without giving rise to a similar
effect on WRJB’s data.

We have attempted to explain the variability in color
discrimination through a biologically motivated model,
whose parameters depend on the observer’s coding scheme
and adaptation state. The success of this attempt, clearly
shown when comparing Figs. 1 and 6, is a strong motivation
for the use of biologically motivated hypotheses for the
studies of color-vision processing.
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