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Abstract
A hyperspectral camera can record a cube of data with both

spatial 2D and spectral 1D dimensions. Spectral Filter Arrays
(SFAs) overlaid on a single sensor allows a snapshot version of
a hyperspectral camera. But acquired image is subsampled both
spatially and spectrally, and a recovery method should be ap-
plied. In this paper we present a linear model of spectral and
spatial recovery based on Linear Minimum Mean Square Error
(LMMSE) approach. The method learns a stable linear solution
for which redundancy is controlled using spatial neighborhood.
We evaluate results in simulation using gaussian shaped filter’s
sensitivities on SFA mosaics of upto 9 filters with sensitivities
both in visible and Near-Infrared (NIR) wavelength. We show by
experiment that by using big neighborhood sizes in our model we
can accurately recover the spectra from the RAW images taken by
such a camera. We also present results on recovered spectra of
Macbeth color chart from a Bayer SFA having 3 filters.

Introduction
A light source or its reflection on a surface is an emitter of

electromagnetic radiation which can be measured as a spectral
function. Devices like a spectroradiometer employ a diffraction
grating which disperses the spectrum linearly, which is then mea-
sured by a sensor, like CCD array. This is however a point mea-
surement. Using a scanning technique (spatial or spectral), it is
possible to record a cube of spectra, with two spatial dimensions
and third in wavelength. Such a system is called a hyperspectral
camera. Hyperspectral imaging, measures a spectral signature
of scene and has applications in different fields like agriculture,
food fraud detection, machine vision, autonomous vehicles, re-
mote sensing, forensics, etc. A scanning solution (linear scan or
filter wheel) might not be ideal solution for cases where time is
a constraint or a portable solution is preferred. Hagen et al. [12]
reviewed several snapshot spectral imaging system. Camera sys-
tems based on Spectral Filter Arrays (SFAs) (referred as Spec-
trally Resolving Detector Arrays by Hagen et al.) have recently
made commercial appearance. IMEC [2] and Silios [3] have both
launched cameras with such SFAs. Silios offers cameras with 9
or 16 narrow band filter mosaics, IMEC has up to 32 different
filters. SFAs subsample the scene photographed both spatially
(by nature of mosaic) and spectrally (by filters).

SFAs are an advancement of the Color Filter Arrays (CFAs)
employed in digital cameras to capture Red, Green and Blue
color by spatial sub-sampling. One need to inverse the spatial
sub-sampling to recover the full resolution color image and this
is known as demosaicing and has been extensively studied in lit-
erature [4, 6, 14]. Demosaicing algorithms makes use of the fact
that RGB color channels are heavily correlated as there is overlap
in the spectral sensitivities of the filters. However, they are lim-
ited to only spatial recovery of tri-stimuli values and not spectral.

Previously, this problem has been studied in the context of

estimating hyperspectral images from a single RGB image as
input using sparse dictionary [8]. The same was also subject
of competition NTIRE 2018 [9] where most of solutions used
Deep Neural Networks. In this case, the authors recover spec-
tra from already demosaiced images. Demosaicing is known to
create false colors and artifacts in areas of high frequency con-
tent, which would be further propagated in the spectral recovery.
Therefore, a real application should start with the RAW images.
Also for SFAs, spectral correlations between the filters are not as
straightforward as they are designed to be narrow-band and there
are certain manufacturing limitations.

In this paper we will study the problem of inverting the sub-
sampling induced by SFA (both spatial and spectral) and recov-
ering the full resolution cube, i.e. hyperspectral image (spatial
dimensions of size of sensor and across a range of wavelengths)
from the RAW image captured by the camera. We do not limit
this work to the visible domain and present a general frame-
work for both visible and Near-Infrared domain. Our algorithm
is based on finding a linear solution to the inverse problem by
learning a mapping between the cross correlation of the RAW
image and its corresponding spectral image taken on a test hy-
perspectral image database. We use the least square estimate to
find the inverse operator which minimizes the mean square error
between the original and the estimated spectra. We further use a
neighborhood window to stabilize our solution. We describe our
model mathematically in the next section. We prefer a linear so-
lution due to its simplicity and computational efficiency as we are
processing megapixels of data over a large range of wavelength
points.

LMMSE Model for Spectral Recovery
Figure 1, shows the basic principle of the Linear Minimum

Mean Square Error (LMMSE) approach to recover hyperspectral
image from the SFA RAW image. Let Z be the hyperspectral im-
age in form of reflectance data cube of size H×W ×P. Meaning
we have H ×W spatial data for P different wavelengths. This
reflectance data rendered by an illuminant gives us the radiance
cube which can be captured by a SFA camera.This results in im-
age of size H ×W , containing pixels with several spectral sen-
sitivities according to the arrangement of filters placed on the
SFA. We can simulate the RAW image X , captured by this cam-
era by applying the spectral sensitivities of the filters F on the
radiance cube and then spatially sampling it according the mo-
saic arrangement M. This is the forward image formation model.
The reverse model is to estimate reflectance cube Ẑ from this X ,
such that the MSE between Z and Ẑ is minimized [18]. A di-
rect simple pseudo-inverse of MFL is not good as the problem
is under-determined because one is trying to estimate P values
for a single spatial pixel. To overcome this problem it has been
proposed to learn the inverse model indirectly [15] on several ex-
emplar taken from images in a hyperspectral image database. It



Figure 1. LMMSE model for spectral recovery. Z is the hyperspectral image data, reflectance. The image formation model is as follows. The reflectance

image is rendered under an illuminant L to get the radiance image which is then rendered by spectral filters’ sensitivity to get the multi-spectral images. This

is further spatially subsampled by the Mosaic’s M to obtain the RAW image X , such that X = MFLZ. Ẑ is the estimate of this data obtained from the RAW

image by applying the Ds operator. The LMMSE model wants to design this Ds, such that the MSE between Z and Ẑ is minimized. Here the reflectance image

shown is from the Finlayson hyperspectral database [11]. Notations in the figure do not account for neighborhood nor the figure show the NIR component.

has also been shown that for estimating a robust inverse model, a
neighborhood should be taken into the SFA RAW image [7].

Because most SFA are made on a replicated sub-pattern,
called super-pixel, tilled over the surface of the sensor, we could
reduced the dimension of the model to the size of a single super-
pixel [17]. To account for the neighborhood subscript 1 is at-
tached to the variable. See reference [5] for a detail description
for the image unfolding with neighborhood. The model could be
expressed in vector-matrix form as follows:

x1 = M1 f1l1z1 (1)

ẑ = Dsx1 (2)
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where K is no. of exemplars learnt (5)

where Equation 1 states the forward model. z1 is a matrix of
column vectors where each vector corresponds to a super-pixel.
Each vector in z1 contains the unfolded reflectance for the area
of the super-pixel plus the neighborhood. l1 is a diagonal ma-
trix containing the illuminant duplicated for the neighborhood
size. f1 is rectangular matrix having number of rows equal to
the number of filters and number of column corresponding to P
times the size of the neighborhood. M1 is a subsampling matrix
that selects which filter belong to which pixel, compensated for
the neighborhood. So x1 correspond to the unfolded matrix of
the RAW image including the neighborhood.

Equation 2 is the reverse model that compute an estimate of
z called ẑ. Ds is the spectral recovery operator which is defined in
Equation 3, where S1 is an operator that reduce the neighborhood
on z1, (z = S1z1).

Another way to express Ds is given in Equation 4 where Rz1

defined in Equation 5 is the correlation of reflectance over the

entire database accounting for neighborhood.
The model above shows that the Rz1 correlation matrix has

to be learnt only once on any given hyperspectral image database.
Only M1 and S1 should be specified for a particular SFA mo-
saic with particular spatial arrangement and filter sensitivities.
To evaluate the performance of the spectral recovery we define a
PSNR in reflectance for all the P channels, where H and W are
spatial dimensions, µz as follows:

MSE =
∑∑(ẑ− z)2

HWP

µz = 10log10
1

MSE
In the next section, we report values of µz, averaged for all

images in that database.

Experiment
Typically SFA filters are based on Faber-Perot interferom-

eters [13]. This provides great flexibility in design of spectral
filters. Lapray et al. [13] demonstrated that these filters can be
approximated by use of a Gaussian model. According to gaus-
sian model the filter can be defined in terms of three parameters
λµ , the wavelength of peak sensitivity, the standard deviation λσ ,
the spread of the filter and finally the amplitude Am, the intensity
factor.

F(λ ) =
Am

λσ

√
2π

e
−(λ−λµ )2

2(λσ )2

Visible and NIR filters
Let us consider SFA having gaussian shaped spectral filters

spanning both visible and NIR wavelength. For purpose of test-
ing we consider the SCIEN database [16] which contains hyper-
spectral images from 414.72nm to 950.49nm. Rz1 was trained



Figure 2. Simulated Gaussian Filters on the Visible+NIR wavelength

on 4 landscape images without the polarizing filter. The im-
ages provided are in radiance and not reflectance, therefore we
attempt to recover radiance directly. The procedure we follow is
as described earlier, we simply replace LZ by the radiance values
provided in the images. This can be done by considering L to
be 1 and Z to be radiance (instead of reflectance). We keep this
consideration only for this sub-section.

We simulated gaussian shaped filter across wavelength
range of 414.7 to 950.5nm. Figure 2, shows the simulated fil-
ters for a λσ of 6 for 3x3 SFA and λσ of 0.25 for a Bayer SFA.
λµ were chosen to ensure the filters were equidistant. Same am-
plitude Am for chosen for all filters, regularized to ensure output
images are not saturated.

Figure 3 shows reconstructed spectra for a particular pixel
of the Stanford Tower image for two different neighborhood sizes
for a SFA of 3x3 size having 9 filters (Figure 2). It can be seen
that a bigger neighborhood size allows a better recovery of the
signal. In terms of average µz, its is 36.15 dB for neighborhood
7, compared to 33.50 dB for neighborhood of 1.

Figure 4 and 5 shows the recovered radiances for 4 differ-
ent pixels points in the Standford Tower image for SFAs of 3x3
(λσ =6) and Bayer [10] (λσ =0.25) type (Figure 2). We chose to
present for very narrow band Bayer type to highlight a bad case.
We see that for the 3x3 SFA, the recovered radiance follows the
measured (from original test images) more closely than the Bayer
SFA. In terms of µz, it is 36.15 dB for 3x3 SFA, compared to only
31.08dB for Bayer arrangement.

Figure 3. Effect of neighborhood window in aiding recovery of spectrum

more accurately for Standford Tower image from SCIEN for SFA 3x3 λσ =6.

For 3x3 SFAs, increasing λσ [0.25 to 10] first improves
PSNR, µz and then it falls again. It suggests that very narrow-
band filters are not the best option as the LMMSE algorithm ex-
ploits cross correlation between spectral channels. However very
large λσ also degrades µz, as individual differences are reduced.
Our algorithm takes only 1.2s to process Standford Tower image,
which has a resolution of 0.8 MP spatially and 148 wavelength
bands.

Figure 4. Recovered Radiance from 4 different pixel points on the Stand-

ford Tower image from SCIEN for SFA 3x3 λσ =6, using a neighborhood of

7. µZ=36.15dB

Figure 5. Recovered Radiance from 4 different pixel points on the Stand-

fordDish image from SCIEN for SFA Bayer λσ =0.25, using a neighborhood

of 7. µZ=31.08dB. We choose to present this to purposefully highlight a bad

case.

Visible filters
To test the spectral recovery into the visible domain, we

consider the Finlayson hyperspectral database [11]. We consid-
ered SFAs having Bayer arrangement, 2x2 (3 filters). Spectral
sensitivities were again gausssian in shape but in this case the
wavelength range is restricted from 400nm to 700nm. We found
that having more filters improved µz. Figure 6 shows the spec-
tra of color patches from the Macbeth colorchecker chart [1], (a)
as recorded in the image from the Finlayson database and (b) as
recovered from the SFA RAW image considering a Bayer mo-
saic, having gaussian shaped equidistant filters of λσ = 4 . These
measurements are average of 100 pixels of each color patch. It
can be observed that the measured spectra seems to follows the
recorded. However it is not possible to qualify the accuracy as
this would depend on the application. One could measure the
MSE between the two spectra, but we feel the need for a met-
ric which can reflect the quality of the measurement in terms of



labels like useful or not. Spectral recovery are for applications
which require distinguishing two spectral signatures, for exam-
ple like food fraud. If one has a sample where plastic rice is
mixed with real rice grains and one needs to distinguish the two.
Our spectral measurement should be different enough to allow
detection of two. In this paper we remain application blind and
therefore choose to present results as it is.

Figure 6. Spectra of the color patches from the Macbeth colorchecker

chart. (a) as measured in the Finlayson database image, (b) as recovered

from SFA RAW image shot with a Bayer arrangement.

Conclusion
In this paper we present a linear approach to recover hyper-

spectral image cube from SFA RAW images. We present results
in simulation considering gaussian shape sensitivities of filters
for both visible and visible+NIR wavelength range. We are able
to recover the shape of the spectra quite reasonably if a large
neighborhood window is use for learning the inverse model. We
found that having more filters, improves the recovered spectra.
For the evaluation purpose PSNR is used. PSNR is useful for
comparing two different test conditions or methods. However
we feel the need of a metric which can reflect whether the recov-
ered spectra is meaningfully accurate. These results are obtained
in simulation, a future work could validate the method on real
RAW images shot with a camera.
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