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1
Retinal processing and its used for digital imaging

Alleysson David and Guyader Nathalie

To perceive the surrounding world, its beauty and subtlety, we not only move eyes but
our visual system makes an incredible job. Even if vision is the most studied sense it is
still not clear how the neuronal circuitry of our visual system build a coherent percept
of the world. In this chapter, we introduce some pathways between our knowledge of
the retinal biology and computational models that might be used in computer vision
systems. Because such pathway must encompass several different disciplines, we will
certainly be partial in our description. But, this introduction brings all the things that
should be taken together to be able to understand the problematic of computer vision.

The first part of the chapter is a short description of the anatomy and physiology
of the retina. Useful link will be given for the reader who wants to have deeper
explanations. The second part summarizes some models of the retina and its visual
functions. We draw a large panorama of these models and we compare them in their
performance and usefulness both to explain vision and to be used use in computer
vision. The last part is dedicated to some examples of the utilization of models of
vision in the context of digital color camera processing. This last part allows us to
illustrate our purpose through real applications.

1.1
Introduction

Biologically-inspired computer vision is not solely based on the scientific results on
the field of biology itself and psychophysics experiments bring needed data for ex-
ample to test the efficiency of models. The contrast sensitivity function (CSF) that
represents the perceived luminance contrast as a function of the spatial frequencies
has been measured before the discovery of the neural network underlying it. Sim-
ilarly, trichromacy (the fact that color vision lie on a tri-dimensional space) have
been stated before we discover the three kinds of cones in the retina. Currently,
in most cases, psychophysics precedes biology. In some sense, psychophysics re-
mains biologically-inspired because everybody agreed that human visual behaviors
are rooted and emerges with the neural circuitry of the visual system. Often, it is sim-
pler to find a model of human behavior instead of biological structure and function



of the neurons that support it. With the main goal to describe biologically-inspired
computer vision, this chapter mixes results that come from psychophysics to results
that come from biology for the goal of biologically-inspired computer vision.

The relationship between behavior and underlying biology is still not fully under-
stood. For example, it is still unclear why our visual world appears stable when our
eyes move continuously. Especially the neurons and mechanism involve in this pro-
cessing are not known. Another question arises to explain the contrast sensitivity
function: at which level this processing occurs: in the retina, in the transmission be-
tween retina and cortex or in cortical areas? In fact, to know exactly at which level
this phenomenon is coded is not essential for models of vision. In fact their aim is
to reproduce functionalities of human vision to develop signal processing algorithms
that mimic the visual system functions. For this, the limit of the imitation of nature by
artificial element is not a barrier, if we are able to reproduce behaviors. However, we
must careful that a model, even perfectly functioning for behavior, is not necessarily
what exactly happen in the visual system.

1.2
Anatomy and physiology of the retina cells

1.2.1
Overview of the retina

Because vision is the most studied sense, a huge number of studies in biology, phys-
iology, medicine, neuroanatomy, psychophysics and also computational modeling,
provide data to better understand this sense. Vision starts with the retina, in the
back of the eyes, that transmits the light wavelengths and converts it. This chap-
ter goes through the basis of the retina functioning rather than detailed description.
The aim is to help a “vision researcher” to roughly understand the functioning of the
retina and how to model it for applications. If one wants to know more about the
retina anatomy and physiology he/she might want to read two free online books: (1)
Webvision, The Organization of the Retina and Visual System by Helga Kolb and
colleagues ( http://webvision.med.utah.edu/) and (2) Eye, brain and vision by David
Hubel (http://hubel.med.harvard.edu/book/bcontex.htm).

The first detailed description of the retina anatomy was provided by Ramon y Ca-
jal one century ago. Since, with the technology and technics improvements, detailed
knowledge about the organization of the retina and the visual system was achieved.
A schematic representation of the retina is displayed in the Figure [I.I] This schema
is a simplified representation because the retina is much more complex and contains
more cell types. Basically, the retina layers are organized into columns of cells from
the “input” cells, the photoreceptors, rods and cones, to the “output” cells, the reti-
nal ganglion cells that have their synapses directly connected to the primary visual
cortex. Layers of cells are inversed compare to the transmission of light, with the pho-
toreceptors located at the back of the retina. Two main layers of cells are generally
described in the literature: (1) the outer plexiform layer (OPL), with the photorecep-
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Figure 1.1 Schematic representation of the organization into columns of retinal cells. Light
goes through the retina from photoreceptors, located at the inner plexiform layer (IPL), to
ganglion cells located in the outer plexiform layer (OPL), passing through bipolar cells
(adapted from Hérault, 2010 [43]).

tors, horizontal and bipolar cells, (2) the inner plexiform layer (IPL), with the bipolar,
amacrine and ganglion cells.

The photoreceptors convert the light, i.e. incoming photons, into an electrical sig-
nal through membrane potential; this operation is called transduction, a phenomenon
that exists for all the sensory cells. The electrical signal is transmitted to bipolar and
ganglion cells. The electrical signal is integrated within ganglion cells and trans-
formed into nerve spikes. Nerve spikes are a time-coded digital form of an electrical
signal. It is used to transmit nervous system information over long distances, in this
case through the optic nerve and into the brain visual cortical areas.

1.2.2
Photoreceptor

The retina contains an area without any photoreceptor where ganglion axons connect
the retina to the primary visual cortex (back of the brain, occipital lobe) forming the
optic nerve. The center of the retina called the fovea (corresponding to the optic axis)
is a particular area of the retina with the highest density of photoreceptors; it is located
closed to the retina center and corresponds to the central vision. The area of the visual
field that is gazed, directly projected onto this central area. There are two main types
of photoreceptors, which are named according to their physical shapes: the rods and
the cones. The fovea only contains cones (Figure[T.2), which are the photoreceptors
sensitive to color information. Three types of cones might be distinguished for their
sensitivity to three different wavelengths: S-cones sensitive to S-hort wavelength that
responds to bluish color, M-cones sensitive to M-edium wavelength that corresponds
to greenish-yellowish and L-cones sensitive to L-ong wavelength that corresponds
to reddish. These photoreceptors are activated during day-vision (high light inten-
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Figure 1.2 Number of photoreceptors (rods and cones) at the retina surface (in square
millimeters) as a function of the eccentricity (distance from the fovea center, located at 0).
The blind spot corresponds to the optic nerve (an area without photoreceptor). From [62]

sity). The number of cones drastically decreases with the eccentricity onto the retina
surface. On the fovea periphery the number of cones is very small compared to the
number of rods. These later photoreceptors are responsible for the scotopic vision
(vision under low light conditions).

The arrangement of photoreceptors on the retina surface has some consequences
on our visual perception. Our visual acuity is maximal for the region of the visual
field gazed at (central vision) whereas it decreases rapidly for the surrounding areas
(peripheral vision). It is important to note that the decrease of our visual acuity in
peripheral vision is only partly due to the retina photoreceptor repartition. In fact
other physiological and anatomical explanations might be given (see[I.2.3). More-
over, whereas we do not feel it in our everyday life only our central vision is colored,
peripheral vision is achromatic. Another particularity of cones arrangement is that
the juxtaposition of L, M and S cones is random in the retina (See Figure[T.4b)) and
differ from individual to individual.

Photoreceptors dynamically adapt their responses to various levels of illumination.
This property allow human vision to be functioning for several decades of light inten-
sity. In fact we perceive the world and we are able to recognize a scene under sunny
day or in the twilight.

1.2.3
Outer and Inner plexiform layers (OPL and IPL)

At this stage, it is important to introduce the notion of receptive field. The receptive
field of a cell is necessary to explain the functioning of retinal cells, and more gen-
erally, the visual cells. This notion was introduced by Hartline for retinal ganglion



cells [41]. According to the definition of Hartline the receptive field of retinal gan-
glion cell corresponds to a restricted region of the visual field where light elicited an
electrical response of the cell. This notion was extended to other retinal cells as well
as cortical visual and sensory cells. The receptive fields of visual cells corresponds to
a small volume of the visual field. For example, the receptive field of a photoreceptor
is a cone-shaped volume with the different directions in which light elicits a response
from the photoreceptor [8]. However, most of the time the receptive field of a visual
cell is schematized in two dimensions corresponding to a visual stimulus (a digital
image) located at a fixed distance from the participant.

The OPL corresponds to the connection between photoreceptors, bipolar and hor-
izontal cells. This connection is responsible for the center/surround receptive fields
displayed by bipolar cells. Two types of bipolar cells might be distinguished: on-
center and off-center. The receptive fields of retinal bipolar cells correspond to two
concentric circles with different luminance contrast polarities. On-center cells re-
spond when a light spot falls inside the central circle surrounding by a dark back-
ground and off-center cells respond for a dark stimulus surrounding by light [68]]. The
functionality of this antagonist center/surround receptive fields is to enhance con-
tours, as it could be done on an image with a spatial high pass filter.

The IPL corresponds to the connection between bipolar, ganglion and amacrine
cells. Ganglion cells still have center/surround receptive fields.

There exist several different retinal ganglion cells that differ in terms of their size
and connections. These cells are directly connected to the primary visual cortex via
the lateral geniculate nuclei. Retinal ganglion cells vary significantly in terms of their
size, connections, and responses. As the number of photoreceptors decreases with
the retinal eccentricity, the size of the receptive fields of bipolar and ganglion cells
increases with the distance from the fixation point. At the retina center there is the so-
called one-to-one connection where one ganglion cell connects to one bipolar cell and
to one photoreceptor guarantying maximal resolution around optical axis.Whereas at
large eccentricity one bipolar cell connects up to several millions of photoreceptors.
Moreover, the size of the receptive fields of bipolar and ganglion cells increases with
their eccentricity and at successive processing stages in the visual pathway.

There are essentially three types of ganglion cells, distinct anatomically and func-
tionally, that project differentially in the lateral geniculate nucleus (LGN) [29]. The
more numerous (around 80%) in the fovea and near fovea is the midget ganglion
cell, called because of their small sizes. They are the cells that connect in one-to-
one with photoreceptors. There responses are sustained, slow and they are known to
carry high spatial information at low contrast as well as L-M color opponency. They
project their axons to the parvocellular part of the LGN. In opposite, parasol gan-
glion cells are large and connect several bipolars and several photoreceptors even in
the fovea. There response are transients and fast, they are known to carry high con-
trast information at low spatial frequency, they are color blind. They also participate
to the rod circuit at night. They project their axons in the magnocellular pathway of
the LGN. A third kind called bistratified ganglion cell have their dendrites forming
two layers in the IPL, they are known to carry S-(L+M) color opponency and project
in the koniocellular pathway of the LGN. Finally, it has been discovered recently a



new kind of ganglion cell containing melanopsin pigment that make them directly
sensitive to light.

1.2.4
Summary of the main preprocessing done by the retinal cells

The retinal ganglion cell axons are directly connected to the superior colliculi and the
cortical visual areas passing through the lateral geniculate nuclei.

The role of the retina is to pre-process the visual signal for the brain. Then the
signal is successively processed by several cortical areas to bring a coherent percept
of the world with the recognition of the objects that compose the scene.

The main functions of the retina are:

* to convert the photons into firing rate that can be transmitted between neurons

* to make adaptation to the mean luminance of the scene but also to the local lumi-
nance contrast

* to decompose the input signal: low spatial frequencies are transmitted first to the
cortex, immediately followed by high spatial frequencies and opponent color infor-
mation.

1.3
Overview of retina models

Most of the retina models have been developed because our visual system is the most
powerful system for object recognition. The aim of retina models is to pre-process
the input signal into an efficient representation of the natural scene. Consequently,
most of the retina models are based on the so-called ecological vision because the
pre-processing of the retina optimizes the representation of information coming from
the visual scene. Interesting lights in this context is those who are related to animal
evolution, such as the light reflected by natural objects such as fruit, trees, landscape,
etc...

Hence, models of the acquisition and pre-process done by the retina mainly focus
on the modeling of the retinal cells that encode visual information. More specifically
those models address the following question: Are we able to reproduce the measured
response of some retinal cells using simple identified elements of the biology. One
of the fundamental model for that is the Hugkins and Huxley’s model [46] which
explains the dynamics of neural conduction, relating the conductance along neurons
with an electrical equivalent model.

The advantage of defining an equivalent electrical model of the network of sim-
ple neural components is double. First, analog signal and image processing could
be modeled as an electrical system that can be translated in terms of electrical equa-
tions ; in this way a direct implementation based on analog component is easy with
a conversion into digital approximation. Second, it is easy to infer the behavior of a
heterogeneous network of cells with different functioning and hence different mod-



els to estimate their functioning. With a model of the synapse transmission between
neurons, the integration of heterogeneous neural network becomes plausible. This
approach have been very fruitful in what is now called, computational models of vi-
sion [52 42]. In the following section, we briefly describe some of models of the
retina based on the Hugkins and Huxley’s model of neural transmission.

Then, we discuss a more general approach (system approach) of neural modeling;
such models build a geometric space of neural activities, and then, infer the behavior
of the network using the geometric rules stated at the neural scale. The neurogeom-
etry, term initially used by Jean Petitot is a very seducing example of such model
category. Focusing on color vision, the Riemannian geometry has extensively been
used for explaining color vision from the LMS cone excitation space. We describe
how those line-element models have tried to put human color discrimination capabil-
ities in a context of Riemannian geometry. We finish this part about retina models
with the information theory model that considers retina as an information transmis-
sion system.

1.3.1
Biological models of the retina

1.3.1.1 Cellular and molecular model - Van Hateren

Van Hateren choose cellular and molecular scales to defined his retinal model [77].
His model of the outer retina have been validated against the measured signal on the
horizontal cells to wide field spectrally white stimuli. Horizontal cells are known to
change their sensitivities and control their bandwidth with the background intensity.
The response is non-linear and the non-linear function changes for background rang-
ing from 1-1000 td. All these properties are taken into account in the van Hateren’s
model and explained by three cascaded feedback loops representing successively the
calcium concentration at the cone outer pigment, the membrane voltage of the cone
inner pigment and the signal modulation of the horizontal cells to cone signals.

His model shows that cone responses are the major factor regulating sensitivity in
the retina. In a second version, they propose to include the pigment bleaching at the
cone outer segment to better simulate cone response [80].

Van Hateren implement his model using autoregressive moving-average filter that
allow modifying in real time the processing following the adaptation parameter (or the
state at time ¢ of the static non linearity part of the model) and fast calculus [77,80].
He also manage to give all the constants involved in the model and implementation
in Fortran and Matlab which make the model very useful. The model is principally
adapted to simulating cone responses, but can be used in digital image processing
such as high dynamic range processing [79]. As far as we know, models developed
by van Hateren are the only molecular model of retina that could be applied on images
or image sequences.

Even focusing on the cellular and molecular modeling, van Hateren fall on a more
general kind of modeling that does not necessary follow closely biology. These gen-
eral models use two kinds of building bricks, a linear (L) multi-components filtering



and a static non-linearity (N). The blocks are then considered in cascade in what is
called LNL or NLN models to consider either the case of two linear operator sand-
wiched the non-linear one, or the reverse. These kind of models are decomposition of
the general non-linear Voltera system [19} [81]] because the non-linearity is static and
point-wise and the only mixing of components (either spatial or temporal) is through
a linear function. These models have been found to be representative of the mecha-
nism of gain control in the retina [[71}12]. The NLN model (also called Hammerstein-
Wiener) is less tractable than the LNL model [28] 21] but may potentially be more
interesting for modeling vision and specially color vision [2} |84} |87} 25].

Cellular and molecular network models of the retina are the most promising be-
cause they are at a perfect scale for fitting electro-physiological measurement and the-
ory of the dynamic of heterogeneous neural network. But they are difficultly tractable
because they reach the limit of our knowledge about optimization of complex systems.

1.3.1.2 Network models - Herault, Worher

Models that simulate the retina functioning are numerous from detailed models of
a specific physiological phenomenon to models of the whole retina. We wanted to
emphasize in this chapter on two interesting models that take into account the dif-
ferent aspects of the retina functioning. These models naturally make simplifications
regarding the complexity of the retina cells functioning but provide interesting results
by replicating experimental results either on particular response cells (for example,
the output retina cells of the cats) or on more global perceptual phenomenon (the
contrast sensitivity function). An implementation of these two models is provided
through executable softwares that can be freely downloaded:

* Virtual retina from Adrien Wohrer & Pierre Kornprobst [86] :
http://www-sop.inria.fr/odyssee/software/virtualretina/

* The retina model originally proposed by Hérault [44] and improved and imple-
mented by Benoit Alexandre [20]]
https://sites.google.com/site/benoitalexandrevision/download

The model proposed by J. Hérault in his book [43] summarizes the main functions
of the retina and it is compared to an image pre-processor. His simplified model of
the retinal circuits is based on the electrical properties of the cellular membrane that
provides a linear model of the retinal cells. Beaudot and colleagues first proposed a
basic electrical model equivalent to a serie of cells connected by gap junctions [[16,[17]
electrical model This linear model provides the fundamental equations of the retina
functions to finally model the retina circuitry through a spatio-temporal filter (see
figure[T.3]for its transfer function).

This model provides interesting results first reproducing biological data provided
by Buser and Imbert [24]. This model reproduces the main function of the retina
with a luminance adaptation, as well as a luminance contrast one that results in a
contrast enhancement. Finally due to the non-separability of the spatial and temporal
dimension, first the low spatial frequencies of the signal are transmitted and latter
refined by the high spatial frequencies that arrive later. This phenomenon reproduces
the Coarse to fine processing that occurs in the visual system. The retina model has


http://www-sop.inria.fr/odyssee/software/virtualretina/
https://sites.google.com/site/benoitalexandrevision/download

Figure 1.3 (left) The spatio (only in one dimension fx) temporal transfer function of the
retina for a square input I(t). (right) The temporal profiles of high spatial frequencies
(HF-X) that corresponds to the parvocellular pathway, low spatial frequencies (LF-X) that
corresponds to the magnocellular pathway X and Y cells (adapted with permission

from [43]

been integrated into a real-time C/C++ optimized program [20]. This paper is more
general and proposed with the retina model a model of the cortical cells to show the
advantages of bio-inspired models to develop efficient modules for low level image
processing.

Wohrer and Kornprobst [86] also propose a bio-inspired model of the retina and
propose a simulation software, called Virtual Retina. The proposed model transforms
a video into spike trains with two main goals: a large scale simulation (up to 100,000
neurons) in reasonable processing times and a strong biologically plausibility. Their
model includes a linear model of filtering in the Outer Plexiform Layer, a shunting
feedback at the level of bipolar cells accounting for rapid contrast gain control, and
a spike generation process modeling ganglion cells. Their model reproduces several
experimental measurements from single ganglion cells such as cat X and Y cells (like
the data from Enroth-Cugell and Robson [33])).

1.3.1.3 Parallel and descriptive model

To conclude with biological model of retina, we introduce the work of Werblin &
Roska [85] based on the identification of severals different processing by cells in the
retina. Characteristics of cells have been invested by electro-physiology. They con-
sidered then the retina as a highly parallel processing system which provide several
maps of information build by the network of different cells. Advantage of this ap-
proach is to provide images or images sequences of the different functions of the
retina.

Similarly, Gollisch & Meister [39] have recently proposed a paper where they dis-
cuss the possibility that the retina would be embedded with high level functions. They
show elegantly how these functions could be implemented by the retinal network.

No one knows at which degree of sophistication the retina is build for, but what we
know is that almost 98% of the ganglion cell having their dendrite leaving the retina
to the LGN have been identified robustly. Nevertheless, their role in our everyday
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vision and perception is not yet been understood.

1.3.2
Geometry models

Geometry models have been extensively developed for color vision and object’s loca-
tion in 3D space. The reason is certainly because Riemann [67]] argues himself that
these two aspects of vision need a more general space than the Euclidean space. For
him, they are the only two examples of continuous manifold in three dimensions that
cannot be well represented in Euclidean geometry. Apparently, this motivate his re-
search on what is called now, Riemannian geometry. The major distinction between
Euclidean and Riemannian geometry is, in the later, that the notion of distance or
norm (length of a segment defined by two points) is local and depend from point to
point in the space. In contrary in Euclidean geometry norm is fixed.

Soon after Riemann, Helmholtz publishes the first Riemannian model [82]] for color
discrimination. Before explaining this model in detail, let considers the evolution of
psychophysics at that time. It was shown by Weber that a variation of the sensation
of weight depends on the weight considered. This law is known as % = Cst.
Intuitively speaking, if you have a weight in your hand let say, I kilogram, then you
feel a difference in weight if you add another weight such that the difference in weight
AT exceed a constant multiplying /. The same kind of law have been found for light
by Bouguer [22]. Formalizing the relationship between the physical space and the
psychological space, Fechner [34] proposes that the law of sensation S is given by
S = kxlog(I) which is one possible solution of the Weber law because the derivative
of the Fechner’law gives AS = %AI = (C'st. It should be noticed that Stevens [[73]]
proposes that the law of sensation is given by a power law, S = k x I?, considering
that a log function also apply for the space of sensation.

The idea of Helmholtz was to provide a model of color discrimination based on
the Fechner’s law embedded in a three dimensional Riemannian space representing
color vision space. The length of element of distance ds is therefore given by:

2 2 2
d d dB
ds® = (dlogR)* + (dlog@)? + (dlogB)? = <ER> + (g) + (F) (1.1)

It is in some sense a direct extension of the Fechner’s law in three dimensional
space [3]]. It is also a Riemannian space because the norm depend on the location of
the space, given by the value of R, G and B denominators in the equation. And, locally
(i.e. for a fixed R, G and B) the norm is the square norm. This class of discrimination
model have been called line-element. Many extension of the Helmholtz’s model have
been given (see for example Schrodinger [70], Vos and Valraven [83]], Stiles [74],
Koenderink [48]], Alleysson and Hérault [2]).

Despite these theoretical models, the prediction of color discrimination was not
so accurate. MacAdam proposes in 1942 a direct measure of the color difference in
CIExy space for a fixed luminance. His well known MacAdam'’s ellipses served as a
basis measure for discrimination and the CIE had proposed two non linear space CIE-
LUYV, CIE-Lab for taking into account those discrimination curves. It has been shown



that MacAdam ellipses could be modeled on a Riemannian space [49] although the
corresponding curvature become negative and positive following the position on the
color space.

Recently, geometry have been used in a more general context than color metric. It
has been used for modeling the processing of assembly in neuron in the visual system
in a field called neurogeometry [63} 26]. Using geometry rules based on the orienta-
tion function of the map of neuron modeling primary visual cortex V1, Jean Petitot
was able to show the spatial link of neural activities that elicits Kaniza’s figure illu-
sion. The approach of neurogeometry is very elegant and fruitful and will probably
generalized to the whole brain. But; it is still challenging when considering color
vision and the sampling of color information with retinal cone mosaic that differs in
arrangement and proportion from individual to individual [3].

1.3.3
Information models

Describing a scene viewed by a human observer need to consider every point of the
scene as reflecting light. For a complex scene, this light field represents a huge
amount of information. It is therefore not possible for a brain to encode every in-
dividual scenes that way for enable useful information retrieval. From a biological
perspective, the retina has hundred millions of photoreceptors but the optic nerve that
conduct information from the retina to the brain comprise solely ten millions of fibers.
Those arguments have lead to the idea that a compression of information occurs in
the visual system[14}36].

From a computational point of view, this compression is similar to the compression
of sound in mp3 or image in jpeg file format. A transform of the input data is done
over a basis that reduce redundancy (the choice of the basis is given by statistical
analysis of the input data). The representation of information onto this basis allow
reducing the size of the representation.

From a biological point of view, Olshausen and Field [60}61]], found that learning
a sparse, redundancy reduced, code from a set of natural images gives basis function
that resemble the receptive fields of neuron in the visual system V1. This work have
been further extend [[18) 9], specifically in the temporal [78} 31]] and color domain
with the correspondence between opponent color coding by neurons and statistical
analysis of natural colored images [23} 169, [75] 54]. A particular treatment of the
theory had focused on retinal processing [12} 11} [10].

Ecology of vision, by stating that the visual system is adapted to the natural visual
environment, give a simple rule and efficient methods for testing and implementing
the principle. However, until now, the network of neuron that could implement such
processing is not found. Actually, information theory is a black box, describing well
the relationship between what enter into the box and what exit from the box. But, it
does not give any rule of what is inside the box, the processing by neurons of visual
information.

We have already made other criticisms about redundancy reduction for color vision
in the context of sampling color by the cone mosaic in the retina [4, [5]. The idea

1
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(b)

Figure 1.4 (a) Bayer color filter array (CFA) (b) Simulation of the arrangement of L-cone,
M-cone and S-cone in a human retina

is based on the fact that the statistical analysis performed in redundancy reduction
implicitly suppose that the image is stationary in space (statistic is done over patches
of the image and should be coherent from one patch to another). But, because of
the random arrangement of cones in the retina mosaic, even if the natural scene is
stationary, the sampled signal will not be.

Also, redundancy reduction models seek for a unique model of information repre-
sentation. But because cone mosaic differ from individual to individual, it is likely
that the representation change from individual to individual [1].

1.4
Application to digital photography

The main application of retina models is given in the processing of raw images into
digital cameras. In digital cameras, the image of the scene is captured by a sensor
usually covered with a matrix of color filters to allow for color acquisition. At each
pixel of the sensor a particular filter is attached. The main color filter array (CFA)
used in today digital camera is called Bayer CFA from the name of its inventor [13]].
This filter array is composed by three colors (either RGB ou CMY) and is a periodic
replication of two of the color on one line over two and two other colors in remaining
lines. By consequent, one of the three colors is represented twice in the array (usu-
ally 1R, 2G and 1B), see Figure ﬂzka). For comparison, Figure ﬂzkb) represent a
simulation of the random arrangement of L, M and S-cones in the human retina.

At the output of the sensor the image is digitalized into height, twelve or more
bits. But, the image is not already a color image because (1) there is only a single
color per pixel, (2) color space is camera based, given by the spectral sensitivity of
the camera (3) white may not be white following the tint of the light source (4) tones
could appear unnatural because of non linearity in the processing of photometric data.
This is the purpose of the digital processing inside the camera to convert raw image
coming from the sensor to nicely viewed color image. See those papers and books

for a review [64], 53, 57].



Classically, the image processing pipeline is composed on the sequential operation.
Image acquisition by the sensor, some corrections on raw data (dead pixels, bloom-
ing, white pixels, ...), demosaicing for retrieving three color information per pixels,
white balancing and tone mapping. In the following section we will described these
operations and give reference to literature. We get a parti-pris to not being exhaustive
in the description but to focus on study that use directly or indirectly models of vision
to state their methods.

1.4.1
Demosaicing

Demosaicing operation is an inverse problem [66] because the operation seek to re-
trieve intensity in color that are not been sampled by the sensor. At the origin, de-
mosaicing have been invested as an interpolation problem using copy of neighbors
pixels to fill-in missing pixels or bilinear interpolation which are easily done by ana-
log electronic element such as delay, adder, etc... But, the emergence of digitalization
of images at the output of the sensor has allowed more complex demosaicing.

The specificity of color image with inter-channel correlation have been taken into
account and almost all method proposed to interpolate color difference instead of
color channel directly [45] |40] for taking account that color channels are correlated.
Another specificity of images have been take into account, the fact that image are
two dimensional, composed by flat surface as well as contours. By identifying the
type of area present in a local neighborhood, it is possible to interpolate along edges
rather than across them. This property of color image have been extensively used for
demosaicing [47, 145]. Conjointly some correction methods have been proposed to
improve the quality of image have been first demosaiced [47,!45}40].

Another approach developed originally by Alleysson et al. [6 (7] and Dubois [32]
consists of modeling the expectation of the spatial frequency spectrum of an image
acquired through a mosaic. In the case of the Bayer CFA of Figure [[.4] the spa-
tial frequency spectrum shows nine zones of energy, one in the center correspond to
luminance (or achromatic information) whereas the height in the border of the spec-
trum correspond to chrominance (or color information at constant luminance). See
Figure[I.3]for an illustration. The demosaicing consist then in estimating (adaptively
to image content or not) luminance and chrominance components by selecting in the
spectrum information corresponding either to luminance or chrominance.

This approach of demosaicing have been shown to be very fruitful. First it is totally
linear method which could easily be optimized for a particular application or for any
CFA. Lu et al. [56] have shown the theoretical equivalence of frequency selection
with alternating projection on convex sets ( sets given by pixels and spatial frequency
elements of the image) proposed by Gunturk et al. [40] whereas Condat [27] shows
the equivalence with variational approach. This model of information representation
in a CFA image is also strongly related to computational model of vision, but include
color component. Nevertheless, the random nature of the cone mosaic in the human
retina and the difference in arrangement from individual to individual make the anal-
ogy difficult to establish formally. The role of eye movement in the reconstruction of
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Figure 1.5 (a) Color image acquired through the Bayer CFA (b) The corresponding spatial
frequency spectrum showing luminance (R+2G+B) information in the center and chromatic
information (R-B, R-2G+B) in the borders.

continuous visual information inside the brain is still to be discovered.

1.4.2
Color constancy - chromatic adaptation - white balance - tone mapping

Retina and visual system show a large extend of adaptation [[72] allowing human vi-
sion to be accurate even if the dynamic range of the scene is very deep. Also, viewed
color of objects are very stable despite of a large difference in their reflective light due
to change in illumination (think of the spectrum of a banana under daylight or indoor
incandescent light which are quite different, but the banana still appear yellow under
both lighting). The so-called color constancy phenomena is a consequence of chro-
matic adaptation that happen in the retina and visual system as illustrated by Land’s
retinex theory [51]]. A large amount of literature have been produced on retinex theory
and its application to image processing.

The principal effect on image quality of not implementing chromatic adaptation
in a digital camera could be seen because white on objects or surface do not longer
appear white.

From a computational point of view, chromatic adaptation is often based on the
von Kries model which stipulate that adaptation is a gain control in the responses of
LMS cones. Roughly, von Kries model of chromatic adaptation write y = MDM'x.
Where x is the vector containing pre-adapted image, y is the vector containing post-
adapted image, M is the 3x3 unitary matrix (M’ = M 1) for the transformation from
image in camera color space to image in LMS color space and D is the adaptation



transform given by:

Lo/Ly 0 0
D=| o0 MM 0 (1.2)
0 0 Sa/51

where .1 represent adaptation under illuminant 1 and .o adpatation under illuminant
2.

By studying corresponding color (colors that are perceived identical under different
light source), many authors have tested how compute adaptation coefficient and in
which space von Kries model work best [50, 138 37]].

Often, chromatic adaptation resumes to white balancing and the so called grey
world assumption [76] is done (average of R, G and B color channel at edges are
equal).

Tone mapping refers to the operation of modifying the value of tones in a image
to make it more pleasant. This operation is particularly challenging when several dy-
namic range of the image is considered from the acquisition to the restitution. Gen-
erally, digital color sensor are linear with light intensity but result in a poor looking
image when display or print because display of printer have intrinsic non linearity and
because human processing if non linear with intensity. Tone mapping operators could
be static and global, meaning that a unique non linear function applies identically for
all the pixel of the image. It could also be dynamic and local depending of the local
content of the scene over time [51,159]]. Dynamic local tone mapping operators could
in principle include all adaptive operations such as chromatic adaptation.

There are several examples of the use of retina’s models for tone mapping [58[35]
65, 1531159] that could serves as illustration of the modeling of retinal processing.

1.5
Conclusion

In the past, computer vision was mostly concerned with physical property of light
and how it can be sensed by artificial material. Often, the final user (ex: human for
photography) of image taken was not considered and we think that all the default of
rendering or interpreting an image was due to a bad image acquisition system. This
way of seeing was principally carried out by the argument that retina performs not
so much processing information and that the brain, a too complicated structure to be
studied mechanically, has non understanding algorithms inside.

This view is therefore discuss since nowadays. First the retina could show more
complicated information processing that we previously thought. Second, the rela-
tionship between retinal processing and image processing suffer from several misun-
derstanding. Those understandings lied on the question about what is responsive for
the behavior a human vision when he decides the quality or interprets an image. All
the effort has been done in finding, in natural scene, the behavior of our perception
without considering that biology has something to do with this behavior.
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Such an approach have been very fruitful because whatever the object of the vi-
sual system is, for adapting to the physical input world optimizing transduction or
for compensating inter-individual difference, the mechanisms of the visual system is
always interesting to be discovered. But, neglecting the biological basis of our vision
system and how it is compensated to enable us a shared vision, is certainly a ma-
jor drawback of our contemporary model of perception. For computer color vision,
we usually used the colorimetry reference observer CIE1924V () and CIE1931xy as
the complete description of the mathematical space where we want optimize some
computation for computer vision (reproduction on media, detection, identification,
)

Color mosaic sampling shared by the human retina and modern digital camera is
typical examples of the compensation that arise in the visual system and may shape
our perception [4}15]]. In color vision this is illustrated by the phenomenological differ-
ence between discrimination and appearance. Discrimination is, roughly speaking,
the ability of a system to represent an incoming information. In such it has a quan-
titative behavior. Appearance in the opposite is a qualitative one because it is not
necessary quantifiable and because it say something directly and not through some
numbers in a defined metric space.

It happens in some circumstances that discrimination contour do not corresponds
to frontiers of appearance [13}130]. From an engineer point of view this is something
surprising because we usually design frontier between categories with the locus of
best discrimination. If we design a system, let say a robot with vision, we measure
its response against an set of physical variables, optimized the processing for dis-
crimination and we expect it improves our decision in between multiple categories of
actions.

Actually, the problem of ignoring compensations for inter-individual differences in
color vision as per-request for understanding visual cognition could be considered as
noise in a variational context. For all ecological model of vision, noise come from the
physical world and very few consider internal noise generated by neural processing.
In color vision we usually consider luminance and color to be subject to the same
independent, identically distributed noise. But, the fact that human cone mosaic is so
different in between observers will certainly generate a differential noise in luminance
and chrominance among observers.

The problem of how individual biological differences in human allow common
vision remains to be solved for better explaining how we share so much agreement
in vision despite our very different biological material. The answer to this question
will certainly improves our knowledge of the functioning of the visual system and
its underlying model. It would certainly provides efficient way to reproduce natural
vision into biologically-inspired computer vision.
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